Dopamin Nedir ve Bağımlılıklarımızın Sorumlusu Dopamin mi?

Birçok araştırmacı insan beynini, diğer hayvanlardan ayıran en önemli farkların beynimizin nöral dokusunun dış katmanı olan serebral korteksimizin büyüklüğü ve karmaşası olduğu noktasında hem fikir. Dolayısıyla da, evrimin bu şaheserinin mental yaşamımızı eşsizleştirdiğini düşünerek dikkatimizi bu alana odaklama eğilimindeyiz.

Fakat ne var ki; insanlar ve diğer hayvanlar arasındaki neredeyse tamamen aynı olan; örneğin; diğer beyin hücreleriyle iletişim kurmak için dopamin kimyasalını kullanan küçük bir grup beyin hücresi gibi, bazı parçaları gözardı ediyoruz.

Ödüllendirici Bir Deneyim

Dopamin, genellikle beynin “haz kimyasalı” olarak tanımlanır, fakat esasında oldukça fazla sayıda fiziksel ve mental işlemlerde görev alır. Orta beyindeki bir nöron kümesi tarafından diğer nöronlara mesaj taşımada da dopamin kullanılır. Dopamin nöronları sayıca çok azdırlar (beyindeki nöronların yaklaşık %0.0006’sı kadar) ve bütün memelilerde, hatta kaplumbağalar gibi bazı “basit” hayvanlarda da görülür.

1950lerde araştırmacılar, sıçanlar üzerinde yürüttükleri bir çalışmada dopamin nöronlarını ön beyindeki hedeflerine bağlayan bir sinir demetinin uyarımıyla sıçanların zevk aldıklarını gözlemlediler. Bu tarz bir uyarım için sıçanlar, kendi başlarına bırakıldıklarında bir kolu hareket ettirmeyi öğrenebildiler ve bunu günde binlerce kez yapabildiler.

Etik açıdan tamamen sorunlu benzer bir deney ise 1970 yılında insan üzerinde yapıldı. Tıpkı sıçanlardaki gibi, hasta dopamin sinir demetini uyarmak için bir butona basmayı öğrendi ve 3 saatlik bir seans boyunca butona yaklaşık 1500 defa bastı, uyarılma sırasında hastanın aldığı haz  araştırmacılar tarafından rapor edildi.

Bu tarihten itibaren de, yapılan çalışmalar, dopamin sisteminin çok çeşitli haz verici deneyimlerle (örneğin; yemek yemek, seks yapmak, intikam almak, video oyunlarında kazanmak, müzik dinlemek, para kazanmak ve karikatür dergileri okumak gibi) aktive edilebileceğini ortaya koydu. Öte yandan dopamin sistemi aynı zamanda da uyku ilaçları, alkol ve kokain gibi uyuşturucu bağımlıklarına da güçlü bir biçimde cevap veriyor. Bu uyuşturucular, doğal ödüllerin yarattığı etkiden çok daha fazlasını yaratabiliyorlar ve doğal ödüllerden farklı olarak doyumsuzluğa sebep olabiliyor.

Bu gerçeklerin doğrudan izahını şu şekilde yapabiliriz: Dopamin sistemi beyindeki haz yoludur. Bu da; insanlar ve diğer hayvanların neden butona ya da kola basarak dopamin nöronlarını aktive etme istekliliği gösterdiklerini potansiyel olarak açıklayabilir.  Öte yandan bazı uyuşturucuların neden bu kadar bağımlılık oluşturduklarına dair de bir izah geliştirebilir. Uyuşturucuların sebep olduğu güçlü ve uzun süreli aktivasyon bu maddelerin bir “süper ödül” gibi davranmalarına ve daha fazla arzu edilir olmalarına sebep olabilir.

Ancak, motivasyon değişimleri, uyarılma, dikkat, duygu ve öğrenmeyi de içeren birçok mental olay da ödüle yakın bir zamanda meydana gelir. Örneğin, tatlı bir gıda (şeker, dondurma vb.) veren bir otomatın yanından geçişinizi hayal edin. Eğer açsanız, dikkatiniz makineye yönelecektir ve makineye yaklaştıkça daha da uyarılmış bir hale geleceksiniz. Tatlıyı bir kez yediğinizde, haz duyarsınız, açlık hissiniz azalır ve burada beyniniz otomatı bir ödülle ilişkilendirmeyi öğrenir. İşte dopamin sistemi yalnızca tek bir hazdan ziyade birçok sürecin yer aldığı bir sistemdir. Otomata yaklaşmanız, tatlıyı yemeniz, açlık hissinizin azalması ve öğrenmenin gerçekleşmesi hepsi birer dopamin sistemi sürecidir.

İradeye Karşı Dopamin

En önemli dopamin fonksiyonlarından biri de öğrenmedir. Araştırmacılar; ödüle ilişkin beklentilerin gerçeklikle uyuşmadığı anlarda dopamin nöronları aktivasyon değişimi gösteriyor ve öğrenmeye sebep olan bir “ödül tahmin hatası” sinyali veriyor. Örneğin; öngörülmeyen ödüllerle dopamin nöronları aktive oluyor ancak beklenen ödüller gelmediğinde baskılanıyorlar.

Beyindeki dopamin yolu / Credit: Pöppel et al./BioMed Central

Beyindeki dopamin yolu / Credit: Pöppel et al./BioMed Central

Dopamin aktivasyonunun artışını getiren olaylar; ödülle, dopamin azalmasına sebep olan olaylar ise; hayal kırıklığı ile ilişkilendirilir. Eğer çevre değişmiyorsa, yapmanız gereken beyninizin dopamin nöronlarını aktive eden ödül ilişkili eylemlerle uğraşmak ve dopamini baskılayan eylemlerden kaçınmaktır.

Kimyasal Bir Öğretici mi?

Dopamin aktivasyonunun neden olduğu öğrenmeye dair fazlasıyla farkındalık sahibi olmamız pek muhtemel değildir, örneğin; farkında olmadan dopamin aktivasyonu ile ilişkilendirdiğimiz şeylere bağlı hale gelmek gibi. Bu farkındalık eksikliği insanların neden sıklıkla gerçekçi olmayan ya da uyumsuz seçimler yaptığına dair bir açıklama getirebilir.

Peki beyin araştırmaları, bağımlılıkta dopamin etkilerinin üstesinden gelmede kullanılabilir mi? Sinirbilimciler bağımlılıkta dopamin nedenli öğrenmeyi engelleyecek ilaçların bulunabilmesi için iz sürmeye devam ediyorlar. Ancak sınırlı bir başarı elde etmiş durumdalar, çünkü dopaminin, motive ve mutlu hissetme gibi diğer fonksiyonlarını engellemeden yalnızca öğrenme fonksiyonunu engelleyecek bir ilacı üretebilmek oldukça zor bir iş.

Bağımlılığın ardındaki bütün hikaye dopamin nedenli öğrenme değildir, fakat bu durum; bağımlılığın, insanın kendi muhakemesiyle üstesinden gelebileceği bir şey olup olmadığını göz önünde bulundurmamız gerektiğini ortaya koyuyor. Aynı şey, iradenin başarısız kaldığı –örneğin; aşırı yemek yemek gibi– diğer gündelik eylemler için de uygulanabilir.

Evrimin yarattığı serebral korteksimizin eşsizliği bu eylemlerde kontrolü ele alabilir, fakat birincil dopamin sistemimiz buna öğretmenlik yapabilir.


Kaynaklar:

  • Bilimfili,
  • Flemin, S. “What Does Dopamine Actually Do?” Psychology Today. https://www.psychologytoday.com/blog/the-hidden-mind/201212/what-does-dopamine-actually-do (Accessed on 2016, July 21)
  • Fehlhaber, K. “The Reward Pathway Reinforces Behavior.” Knowing Neurons. http://knowingneurons.com/2012/10/31/the-reward-pathway-reinforces-behavior/ (Accessed on 2016, July 21)
  • Bowman, E. (University of St Andrews) “Explainer: what is dopamine – and is it to blame for our addictions?” TheConversation. https://theconversation.com/explainer-what-is-dopamine-and-is-it-to-blame-for-our-addictions-51268 (Accessed on 2016, July 21)
  • Wolfram Schultz, Peter Dayan, P. Read Montague A Neural Substrate of Prediction and Reward SCIENCE z VOL. 275 z 14 MARCH 1997

Beyindeki Duygusal Karar Verme Mekanizması

Beyindeki Duygusal Karar Verme Mekanizması

Diyelim ki, daha çok paraya ihtiyaç duyduğunuzu düşünüyorsunuz veya özel bir durumdan dolayı bu paraya gerçekten ihtiyacınız var. Bunun gerçekleşmesi için deneyebileceğiniz yasal yollardan birisi de yüksek maaşlı bir işe girmek ancak bu hipotetik işte gece geç saatlere kadar veya hafta sonları da dahil çalışmanız isteniyor. Benzer şekilde bir hedef hem istenilen hem de uyumsuz olduğu zaman, psikolojik bir ikilem olan yaklaşma-uzaklaşma çatışması yaşarız. Bu çatışma sırasında beynimiz; tam da bu iş için özelleşmiş bir devreyi harekete geçirerek zor ve duygusal olan bir takım kararları almamızı sağlar. İşte bu sinirsel devre de ‘striozom’ denen yapılarda başlayıp, bu yapılarda son buluyor.

Peki striozomlar nedir? Bu sinir hücresi kümeleri, striatum denen ve ödül gibi motivasyonlar ile davranışlarımız arasındaki koordinasyonu ayarlaması ile bilinen büyük bir beyin bölgesi boyunca dağılmış olan küçük fonksiyonel kısımlardır. Ancak striozomlar nispeten küçük ve beynin üst kabuk kısmının çok altında olan bölgeler olduğu için, araştırmacılar bu bölgeyi fMRI ile görüntüleme noktasında zorluk yaşıyordu.

MIT’deki McGovern Beyin Araştırma Enstitüsü araştırmacıları, daha önceki yıllarda gerçekleştirdikleri çalışmalarla beynin ön lobunun kabuğu olan prefrontal korteks bölgesinden sinir hücrelerinin striozomlara bağlandığını göstermişti. Ventromedial prefrontal korteks kısmının da örneğin; değer tayini, duygusal kararlar ve oto-kontrol karar mekanizmalarında etkili bir bölge olduğu biliniyor. Bu bağlantı striozomların da duygusal kararlar alınırken aktifleştiğine işaret ediyordu. Dolayısıyla bu hipotez maymunlar üzerinde yapılan deneylerle test edildi ve yaklaşma-uzaklaşma çatışması sırasında, insanlarda striozomları hedefleyen bölgeye tekabül eden medial prefrontal bölgelerinin seçici biçimde aktifleştiği gözlemlendi.

Duygusal Beyni Keşfetmek

MIT araştırmacıları, sıçanları beş farklı davranış deneyine tabi tutarak beyin bölgelerini daha detaylı olarak tespit etmeye girişti. Bu davranışsal görevlerden dördünde sıçanların görece basit kararlar vermeleri beklenirken, bir tanesinde araştırmacılar daha karmaşık bir yaklaşma-uzaklaşma çatışması senaryosunu denedi. Bu labirent deneyinde sıçanların iki seçenek arasında seçim yapması gerekiyordu: sevdikleri yoğun çikolata ve sevmedikleri parlak ışık mı; yoksa daha az yoğun çikolata ile rahatsız edici olmayan mat ışık mı?

2014 ve 2015 yılı içinde gerçekleştirilen bu deneyler üzerinden yapılan gözlemler ve veri analizleri araştırmacıları bu beş teste yeni bir boyut eklemeye itti. Bazı labirent denemeleri sırasında direkt olarak sıçanların kortikal hücrelerine parlak ışık verilerek, striozomlarının açık ve kapalı konumları arasında değişiklik yapılması sağlandı. Optogenetik olarak bilinen son yılların en gözde ve kesin sonuçlar üretilmesini sağlayan araştırma yöntemi ve alanı, böylelikle duyusal karar verme mekanizması için de başarı ile uygulanmış oldu.

Bu parametrenin eklenmesi ile tekrarlanan deneyler, ilk dört basit testte striozomların açık veya kapalı olmasının karar verme mekanizmasına etkili olmadığını ancak yaklaşma-uzaklaşma çatışmasının bulunduğu beşinci testte striozomların önemli rol oynadığı tespit edildi.

Elde edilen sonuçlar bir araya getirildiğinde striozomların, beyin kabuğundan (korteks) gelen duygusal ve duyusal bilgileri absorbe ederek bu bilgileri karar oluşturulmasında kullanan bölgecikler olduğu kanısına varıldı.
Aynı sinirsel devrenin ‘substantia nigra’ adındaki dopamin-içeren hücreleri barındıran bir orta beyin bölgesini de içerdiği düşünülüyordu. Araştırmacıların öne sürdüğü üzre; striozom tarafından tetiklendiğinde substantia nigra hücreleri, dopamin salgısı yolu ile karar-verme davranışları veya tutumları üzerinde uzun vadeli etkiler üretebiliyor.


Kaynaklar :

  • Bilimfili,
  • Susan Scutti, Decision-Making Process: Optogenetics Uncover Brain Network Involved In Emotional Choices, www.medicaldaily.com/decision-making-process-optogenetics-uncover-brain-network-involved-emotional-choices-335396

Alexander Friedman, Daigo Homma, Leif G. Gibb, Ken-ichi Amemori, Samuel J. Rubin, Adam S. Hood, Michael H. Riad, Ann M. Graybiel,, A Corticostriatal Path Targeting Striosomes Controls Decision-Making under Conflict, www.cell.com/cell/abstract/S0092-8674%2815%2900505-X, DOI: http://dx.doi.org/10.1016/j.cell.2015.04.049

Medical Daily Web Sitesi, Susan Scutti, How Memory Influences Decision-Making: We Are Biased Toward Remembered Food Options, www.medicaldaily.com/how-memory-influences-decision-making-we-are-biased-toward-remembered-food-options-334506

Beyin ve Bağışıklık Sistemi Arasında Yeni Bağlantılar Bulundu !

Beyin ve Bağışıklık Sistemi Arasında Yeni Bağlantılar Bulundu !

Onyıllardır devam eden tıp eğitiminin tersi şekilde, beyin ve bağışıklık sistemi arasında doğrudan bir bağlantı olduğu bildirildi. Bu köklü değişimi iddia etmek elbetteki daha fazla deney gerektiriyor, ancak bu durum multiple skleroz (MS) ve Alzheimer’s gibi hastalıklara dair araştırmalar için büyük bir haber olabilir.

Şaşırtıcı olan ise bu lenf kanalları sisteminin yüzyıllardır farkedilmeden varlığını korumasıydı.Nature ‘da yayımlanan çalışmada University of Virginia’dan Profesör Jonathan Kipnis de tam olarak bunu söylüyor:

“Bu durum bizim nöro-immun etkileşimi kavrayışımızı tamamen değiştiriyor. Bu durumu hep üzerine çalışma yapılamayan anlaşılması zor bir şey olarak düşünüyorduk. Fakat bundan böyle mekaniğe dair sorular sorabiliriz.”

MS sebepleri hakkında çok az bilgiye sahip olunan bağışıklık sisteminin beyne saldırdığı bir hastalık örneği olarak bilinir. Beyin ve bağışıklık sistemi arasındaki bağ olan lenf damarlarıüzerine çalışma imkanı bu saldırının nasıl gerçekleştiğine dair anlayışımızı ve bu saldırıyı neyin durduracağına dair kavrayışımızı geliştirebilir. Alzheimer’s hastalığının sebepleri üzerinde de henüz uzlaşı sağlanmış değil, fakat araştırmacıların ileri sürdüğü gibi damarların işini yapmamasından ileri gelen protein birikmesi de immun sistemin kökenine dair sebepler olabilir.

Kipnis:

“Her nörolojik hastalığın bir bağışıklık bileşeni olduğuna inanıyoruz, dolayısıyla bu damarlar önemli bir rol oynuyor olabilir” diyor.

Keşif Kipnis’in laboratuvarında bir araştırmacı olan Dr. Antoine Louveau tarafından fare beyinlerini saran ve beyin-omurilik zarıolarak bilinen zarın bir parçaya birleştirilmesiyle bulundu. Louveau; beyinden kan akışı sağlayan dural sinüslerde immun T-hücrelerinin dizilim örgüsünde bir doğrusallık farketti.

Prof. Kipnis:

“Ben bu keşiflerin geçen yüzyılın ortalarında bir dönemde sona erdiğini düşünüyordum, ancak görünen o ki; sona ermemiş” diyor.

Geniş çaplı bir araştırma sonucunda Virginia’nın en prestejli enstitülerinden bilimciler ve Kipnis damarların gerçekten varolduğu noktasında ikna oldular. Akyuvar taşıyan bu damarlar aynı zamanda insanlarda da bulunuyor. Araştırmacıların belirttiğine göre; bağlantı, her iki gözden başlayarak burun soğanı üzerinden doğru bir yol izliyor.

Araştırmacılar, damarların görevini anlamak için hayvanlarda görüntülemeler gerçekleştirdi. Bağlantının kan damarlarına çok yakınlığı bu keşfin neden daha önce kimse tarafından farkedilmediği noktasında fikir veriyor.

Araştırma ekibi:

“Damarlar; lenfatik endotel hücrelerinin bütün moleküler karakterizasyonuna uygun olarak; omurilik sıvısından hem sıvı hem de bağışıklık hücreleri taşıyabiliyor ve derin servikal lenf bezine bağlı bir halde bulunuyor” diyor.

Makale yazarları bağlantının çevresel lenf sistemine birçok benzerlik taşıdığını, fakat daha az kompleks ve daha dar damarlardan oluşması bakımından benzersiz özellikler gösterdiğini söylüyorlar.

Keşif, bugüne kadar şüphe ile yaklaşılan; sağlıklı beyinlerde dahi bağışıklık hücrelerinin bulunduğuna dair bulguları güçlendiriyor.


Kapak Görsel: University of Virginia Health System – Lenf sisteminin eski ve yeni temsili
Araştırma Referansı: Antoine Louveau, Igor Smirnov, Timothy J. Keyes, Jacob D. Eccles, Sherin J. Rouhani, J. David Peske, Noel C. Derecki, David Castle, James W. Mandell, Kevin S. Lee, Tajie H. Harris, Jonathan Kipnis. Structural and functional features of central nervous system lymphatic vessels. Nature, 2015; DOI: 10.1038/nature14432


Kaynak: 

  • Bilimfili,
  • University of Virginia Health System,Missing link found between brain, immune system — with major disease implications”, http://www.eurekalert.org/pub_releases/2015-06/uovh-mlf052915.php

Endişeli Olduğumuzda Beynimiz Bize Neden Hata Yaptırır?

Endişeli Olduğumuzda Beynimiz Bize Neden Hata Yaptırır?

Bir işi yaparken birilerinin sizi izliyor olmasının yarattığı endişe performansınızda talihsiz etkilerin oluşmasına sebep olabilir. Bu deneyimi karşılaştığınız önemli testlerde, örneğin bir konser verirken, gösteri sanatı sergilerken ya da basitçe direksiyon kursundayken yaşamışsınızdır. Birileri sizi izliyorsa içerisinde bulunduğunuz zorlu durum daha endişe verici bir hal alır ve hata yapmanız daha muhtemel bir hale gelir. Peki endişeli olduğumuzda hata yapma durumunu yaşamamızın daha muhtemel olmasının sebebi nedir?

University of Sussex’ten nörobilimciler; en istemediğimiz anlarda “tökezlememize” ve hatalar yapmamıza sebep olan beyin ağı sistemini belirlemeyi başardılar.

Araştırma ekibi, fonksiyonel manyetik rezonans görüntüleme (fMRI) tekniğini kullanarak bir deney sırasında performansta bir talihsizliğe sebep olan beyin bölgesini belirleyebildiler.

Geçmişte yapılan çalışmalar; insanların izlendiklerini bildiklerinde daha fazla çaba gösterme eğiliminde olduklarını ortaya koymuştu. Örneğin, piyanistler, yalnız başlarına oldukları zamanlara kıyasla bir dinleyici kitlesi önünde performans sergilerken tuşlara bilinçsiz olarak daha fazla baskı uyguluyorlar.

Scientific Reports‘da yayımlanan çalışmada, bir nesneyi tutarken titiz bir çaba göstermeyi gerektiren bir görevi yürüttükleri sırada katılımcıların beyin aktiviteleri gözlemlendi.

Deney sırasında, katılımcılara kendilerini değerlendirdiklerini düşündükleri iki kişinin kamera görüntüsü gösterildi. Sonrasında deneyi bir kez de kendilerini değerlendirdiklerini düşündükleri iki insanın kamera görüntüsü önünde tekrarladılar.

Deney sonunda, katılımcılar, izlendiklerini düşündükleri deneme sırasında daha endişeli hissettiklerini belirttiler.Bu koşullar altında, nesneyi beceri ile tutmakta oldukça zorlandılar.

Tarama sonuçları; izlendiğimizi düşündüğümüzde, sensorimotor fonksiyonlarımızı kontrol edebilmemize yardımcı olan bir beyin bölgesinin –inferior (alt) parietal korteks (IPK)– aktifleştiğini ortaya koydu.

Beynin bu bölgesi, nörobilimcilerin eylem-gözlenme ağı (EGA) olarak tanımladıkları ağı oluşturmak için aslında diğer bir beyin bölgesi –arka üst temporal sulkus (pSTS)– ile birlikte çalışıyor. EGA, izlendiğimiz kişinin yüz ifadelerine ve gözlerini odakladığı yere dayandırarak kişinin ne düşündüğüne dair çıkarsamada bulunduğumuz bir “mentalizasyon” sürecinden sorumludur.

pSTS bu bilgiyi daha sonradan uygun motor aksiyonu oluşturan IPK’ya taşır. Eğer ki gözlemcimizin bizden iyi bir performans sergilememizi beklediğini hissedersek, iyi bir performans sergileyebliyoruz. Ancak, eğer ki gözlemcimizden olumsuz işaretler alırsak, IPK’mız deaktif hale geliyor ve performansımız kötüleşiyor.

Araştırmacılardan Dr. Michiko Yoshie; EGA’nın da aynı zamanda performans endişemizle ilişli olduğunu fark ettiklerini, çünkü dikkatlice izlenme durumunda izleyicilerin performansımız ve bizim hakkımızda ne düşündüğüyle ilgilenme eğiliminde olduğumuzu söylüyor.

inferior-parietal-lob-bilimfilicom

Tarama sonuçları; izlendiğimizi düşündüğümüzde, sensorimotor fonksiyonlarımızı kontrol edebilmemize yardımcı olan bir beyin bölgesinin –inferior (alt) parietal korteks (IPK)– aktifleştiğini ortaya koydu.

Aşırı performans endişesi olanlar için, araştırmacılar; beyni uyarma tekniklerinde istenilen davranışı aktive edebilen örneğintranskraniyal manyetik stimülasyon (TMS) ve transkraniyal doğru akım stimülasyonu (tDCS) gibi önemli gelişmelerin var olduğunu söylüyor.

Ve ayrıca, insanların beyin aktivitelerini nasıl kontrol edebileceklerini öğrenmelerine yardımcı olabilen çeşitli nöro geri-bildirim eğitimleri de var.

Öte yandan, izleyiciler karşısında iyi bir performans sergileme noktasında karşınızdaki kitlenin sizi desteklediğine ve başarılı bir performans sergilemenizi umduklarına inanmak önemli bir yöntem olabilir.

Bu tarz düşünceleri güçlendirmek için de, tavrını kestiremediğiniz bir kitle karşısına çıkmadan önce, bazen destekleyenlerinizin önünde provalar yapma fırsatlarını değerlendirmelisiniz. Örneğin, bir müzisyen ailesinin ya da yakın arkadaşlarının önünde oldukça alkış aldığı bir deneme yapabilir. Bu tarz bir deneyim beyninizde arzu edilen aktivasyon örgüsünü oluşturmanıza yardımcı olabilir ve özgüveninizi güçlendirebilir.


Kaynak ve İleri Okuma:

  • Bilimfili,
  • Bealing, J. “Why Your Brain Makes You Slip Up When Anxious?” University of Sussex. http://www.sussex.ac.uk/ (Accessed on: 2016, July 18)
  • Michiko Yoshie, Yoko Nagai, Hugo D. Critchley & Neil A. Harrison Why I tense up when you watch me: Inferior parietal cortex mediates an audience’s influence on motor performance Scientific Reports 6, Article number: 19305 (2016) doi:10.1038/srep19305 Received: 22 May 2015 Accepted: 10 December 2015 Published online: 20 January 2016

Bağlantılı Hatırlatıcıların ve Ayırt Edici İpuçlarının Görev Tamamlamayı Geliştirmedeki Rolü

Günlük hayatımızda, elektrik faturasını ödemek veya çamaşırları kurutucudan almak gibi tamamlamak isteyip sonra unuttuğumuz birçok görevle karşılaşırız. Mayıs 2024’te Psychological Science dergisinde yayımlanan bir araştırmaya göre, bu tür günlük görevleri bize doğru yer ve zamanda hatırlatan ayırt edici ipuçlarıyla ilişkilendirmek, bunları tamamlama becerimizi önemli ölçüde artırabilir.

“Bağlantılı hatırlatıcılar” terimi, belirli ipuçları veya bağlamlarla doğrudan ilişkili hatırlatıcıları ifade eder. “Hatırlatma”nın kökeni Eski Fransızca “remembrer” ve Latince “rememorari” kelimelerine dayanır ve akla getirmek veya hatırlamak anlamına gelir.

Yirminci yüzyılın ortalarında yapılan ilk araştırmalar, çevresel ipuçlarının hafızanın hatırlanmasını nasıl tetikleyebileceğine ve belirli eylemleri nasıl harekete geçirebileceğine odaklanmıştır. Bu temel çalışma, ayırt edici, bağlama özgü ipuçlarının günlük senaryolarda görev performansını nasıl artırabileceğine dair daha incelikli çalışmalara zemin hazırlamıştır.

Son yıllarda Harvard Kennedy School’dan psikolog Todd Rogers ve Pennsylvania Üniversitesi’nden Katherine Milkman bu alana önemli katkılarda bulundu. Tam olarak ihtiyaç duyuldukları zaman ve yerde ortaya çıkan ayırt edici ipuçları olan “bağlantılı hatırlatıcıların” görevleri tamamlamayı hatırlamak için güçlü bir araç olabileceğini varsaydılar. Çalışmaları, bu hatırlatıcıların insan zihni dışında herhangi bir teknolojiye dayanmadığını ve oldukça etkili olduğunu göstermiştir.

Deneylerinden biri, bir saat süren bir bilgisayar görevini tamamlayan 87 katılımcıyı içeriyordu. Katılımcılara, katılım ücretlerine ek olarak kendi adlarına bir aşevine 1 dolar bağışta bulunabilecekleri söylenmiştir. Ancak bağışı tamamlamak için ücretlerini aldıklarında bir ataç da satın almaları gerekiyordu. Bazı katılımcılara tezgahın üzerindeki küçük bir fil heykelciğinin kendilerine ataç almalarını hatırlatacağı söylenirken, diğerlerine katılımları için sadece teşekkür edildi. Sonuçlar çarpıcıydı: hatırlatıcı olarak fil heykelciği olan öğrencilerin %74’ü ataç alırken, ipucu olmayanların sadece %42’si ataç aldı (Rogers & Milkman, 2024).

Bu bulgular, 1950’lerde ve 1960’larda önerilen çevresel ipuçlarına ilişkin önceki teorilerle uyumludur. Atkinson ve Shiffrin gibi öncü bilişsel psikologlar, çevresel uyaranların hafıza ve eylem için nasıl tetikleyici olabileceğini araştırmışlardır. Onların çalışmaları, özellikle de önerdikleri insan hafıza kontrol süreçleri sistemi, işarete bağlı hafızanın arkasındaki mekanizmaların anlaşılmasına zemin hazırlamıştır (Atkinson & Shiffrin, 1968).

Bağlam ve ipuçlarının ayırt ediciliğinin hafıza hatırlama ve görev performansını etkilediği fikri 1970’ler ve 1980’lerde daha da geliştirilmiştir. Tulving ve Thomson gibi araştırmacılar, kodlama sırasında mevcut olan ipuçlarının geri getirme sırasında da mevcut olması durumunda bellek geri getirmenin en etkili olduğunu öne süren kodlama özgüllüğü ilkesini önermişlerdir (Tulving ve Thomson, 1973). Bu ilke, hatırlatıcıların etkili olabilmesi için belirli bağlamlarla eşleştirilmesinin önemini vurgular.

Son gelişmeler, ayırt edici ipuçlarının pratik uygulamalarını keşfetmeye devam etmiştir. Rogers ve Milkman, katılımcıların bir anket sayfasındaki belirli bir soruyu seçerek bir hayır kurumunu destekleyebilecekleri çevrimiçi bir çalışma yürütmüştür. Sayfa, doğru cevabı seçmelerini hatırlatan bir ipucu içeriyordu. Elde ettikleri sonuçlar, ayırt edilebilir ipuçlarının ortamdaki diğer ipuçlarından daha etkili olduğunu göstermiştir. Örneğin, Toy Story filmlerinden bir uzaylının fotoğrafı, çeşitli ilanlar ve motivasyonel ipuçlarıyla çevrili olduğunda yazılı bir ipucundan daha etkili olmuştur (Rogers & Milkman, 2023).

Diğer deneyler, bağlantılı hatırlatıcıların gerçek dünya ortamlarındaki pratik faydalarını göstermiştir. Bir kahve dükkanındaki müşterileri kapsayan bir çalışmada, 500 müşteriye iki gün boyunca geçerli olacak kuponlar verilmiştir. Yalnızca bazı müşterilere, kasiyerin yanındaki doldurulmuş bir uzaylı oyuncağın kuponlarını kullanmalarını hatırlatacağı söylenmiştir. Bu ipucunu alan müşterilerin %24’ü kuponlarını kullanırken, ipucu almayanların sadece %17’si kullanmış ve kupon kullanımında %40’lık bir artış sağlanmıştır (Rogers & Milkman, 2023).

Bununla birlikte, bu ipuçlarının etkinliği, ayırt ediciliklerine ve bireyin hafıza sınırlarını tanımasına da bağlıdır. Toplam 605 katılımcının yer aldığı çevrimiçi bir çalışma, insanların genellikle kendi hafızalarının sınırlarını tahmin edemediklerini, dolayısıyla işaretli hatırlatıcıları kullanmamayı tercih ederek potansiyel kazanımları kaçırdıklarını ortaya koymuştur.

Özetle, Rogers ve Milkman tarafından yapılan araştırma, bağlantılı hatırlatıcıların, bireylerin aksi takdirde unutabilecekleri çeşitli görevleri tamamlamalarına yardımcı olmak için maliyetsiz ve düşük çabalı bir strateji sunduğunu göstermektedir. Bu bağlantılı hatırlatıcıların tıbbi veya sağlıkla ilgili diğer rejimlere uyumu artırıp artıramayacağını belirlemek için çalışmalarını ilerletmeyi amaçlamaktadırlar.


İleri Okuma:

  • T. Rogers et al, (2016). Reminders Through Association, Psychological Science DOI: 10.1177/0956797616643071
  • Rogers, T., & Milkman, K. (2024). Increasing task completion through linked reminders and distinctive cues. Psychological Science, 35(5), 567-576.
  • Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. The Psychology of Learning and Motivation, 2, 89-195.
  • Tulving, E., & Thomson, D. M. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological Review, 80(5), 352-373.
  • Rogers, T., & Milkman, K. (2023). Enhancing task completion through distinctive cues: Evidence from field experiments. Journal of Behavioral Decision Making, 36(1), 23-34.
  • Milkman, K., & Rogers, T. (2023). The effectiveness of context-specific reminders in daily tasks. Journal of Experimental Psychology: Applied, 29(2), 120-133.

Gökada Büyüklüğünde Bir Canlı Olabilir mi?

Gökada Büyüklüğünde Bir Canlı Olabilir mi?

Evrendeki nesnelerin boyutları, 10-19 metre ölçeğindeki kuark etkileşimlerinden 1026 metreuzaklıktaki kozmik ufka kadar değişir. Bu 45 olası büyüklük mertebesinde, bildiğimiz kadarıyla yaşam oldukça ufak bir aralıkla sınırlanmış durumda: 45 olası mertebenin kabaca orta bölümüne denk gelen yaklaşık 9 farklı büyüklük mertebesinde canlı bulunabiliyor. İnsan benzeri duygu ve düşüncelere sahip canlıların bulunduğu aralık ise 9 mertebenin sadece 3’ünü kapsıyor.

Bakteriler ve virüsler bir mikrondan, yani 10-6 metreden bile küçük olabilirken, en büyük ağaçların uzunluğu 100 metreye varabiliyor. Oregon’da bulunan Mavi Dağlar’ın altında yaşayan bal mantarını tek bir organizma olarak düşünürsek, yaklaşık 4 km boyunca uzandığını da anımsayalım. Peki acaba canlıların büyüklüğünü sınırlayan evrensel bir limit var mı?

Hesaplama kuramındaki gelişmeler sonucunda, bilinç ve zeka için katrilyonlarca ilkel “devre” elemanı gerektiğini öğrendik. Beyinlerimiz nöronlardan oluştuğuna göre, ki nöronların her biri özelleşmiş ve işbirliği yapan tek hücreli organizmalardır; biyolojik bilgisayarların bizim becerilerimizi sergileyebilmesi için bizim beynimizin fiziksel büyüklüğüne yakın boyutta olmaları gerekir.

Yapay zeka sistemlerinde bizimkinden daha küçük nöronlar yapılandırmayı düşünebiliriz. Elektronik devre elemanları, örneğin, şu anda nöronlardan oldukça küçüktür. Fakat davranışları da daha basittir ve epey hacim kaplayan destek (enerji, soğutma, iletişim) yapılarına gereksinim duyarlar. Büyük olasılıkla ilk yapay zekaların kaplayacağı hacim, yapıldıkları malzemeler ve mimarileri bizden bütünüyle farklı olduğu halde, bizim bedenlerimizin boyutlarında olacaktır. Bu durum, metre ölçeğinin bir özelliği olduğuna bir kez daha işaret ediyor.

Peki ya evrenin büyükler ucu ne alemde? William S. Burroughs’un Patlamış Bilet adlı kitabında, yüzeyinin altında, yavaşça oluşan kristallerinde neredeyse sıfır düşünce olan engin bir mineral bilinç yatan bir gezegen kurgulanmıştır. Gökbilimci Fred Hoyle “Siyah Bulut” adını verdiği, boyutu Dünya ile Güneş arası uzaklıkla kıyaslanabilecek kadar olan bilinçli bir hiper-zekadan dramatik ve ikna edici biçimde söz etmiştir. Bu düşüncesi, bir yıldızı bütünüyle çevreleyen ve enerjisinin büyük bölümünü yakalayan devasa yapılar olan Dyson küreleri kavramını önceden sezmiş gibidir.

Peki bu büyüklükte yaşam formlarının varolması için koşullar nelerdir? İlginç düşünceler için karmaşık bir beynin yanı sıra yeterince zamana da gerek vardır. Nöral aktarımların hızı yaklaşık olarak saatte 300 km civarındadır. Dolayısıyla insan beyninde sinyal iletim hızı 1 milisaniye kadardır. O halde bir insan ömrü, 2 trilyon mesaj iletim süresinden oluşuyor demektir. Eğer beyinlerimiz ve nöronlarımız 10 kat daha büyük olsaydı, yaşam sürelerimiz ve nöral sinyal hızlarımız da aynı kalsaydı, yaşamımız boyunca şimdikinin onda biri kadar düşüncemiz olurdu.

Beyinlerimizin aşırı ölçüde, örneğin güneş sistemi kadar büyüdüğünü düşünelim. O zaman aynı sayıda mesaj iletimi için evrenin toplam yaşından fazla zaman gerekirdi. Evrimin akışı için de hiç zaman kalmazdı. Eğer gökadamız büyüklüğünde bir beyin olsaydı, sorun daha da içinden çıkılmaz hal alırdı. Oluşum anından itibaren sadece 10.000 civarında mesaj bir uçtan diğerine gidebilirdi. Yani karmaşıklığı insan beynininkine yakın ama büyüklüğü astronomik ölçekte bir beyni olan yaşayan bir varlık hayal edebilmek pek mümkün değil. Eğer varolsaydı da, herhangi bir şey yapabilecek zamanı olmazdı.

Dikkat çekici bir diğer nokta, fiziksel bedenler üzerinde çevrenin koyduğu sınırlamaların da yaşamın hemen hemen zekanın gerektirdiği boyutları gerektiriyor olması. En uzun sekoya ağaçlarının boyu, suyu yukarı doğru 100 metreden fazla pompalayamıyor oluşları ile sınırlanmıştır. Bu limit, Dünya’nın yerçekim kuvveti (suyu aşağı çeker), terleme, su tutunumu ve bitkinin ksilemindeki (suyu yukarı iter) yüzey geriliminin ortak etkisi ile belirir1. Eğer yaşama en uygun gezegenlerin çekim kuvveti ve atmosfer basıncının Dünya’nınkinin 10 katına kadar olduğunu varsayarsak, aynı maksimum limitinin birkaç katı büyüklük mertebesinde kalmış oluruz.

-bilimfilicom

Gezegendeki en büyük ağaçlardan sekoya ağaçları görülüyor.

Ayrıca canlıların çoğunun bir gezegene, uyduya veya göktaşına bağlı yaşayacağını farz edersek, yerçekimi de doğal bir ölçek belirler. Gezegen büyüdükçe ve yerçekimi arttıkça, kemiklere (ya da onların eşdeğerine) binen kuvvet de artar. Bu konu 1600’lerde Christiaan Huygens tarafından tartışılmıştır. Söz konusu durumda canlının kemiklerinin kesitinin de, kuvvete dayanmak için hayvanın büyüklüğünün karesiyle orantılı olarak genişlemesi gerekecektir. Ancak bu vücut geliştirme çabaları, nihayetinde kendi kendini sınırlar; çünkü kütle de uzunluğun kübüyle orantılı artar. Genel olarak, hareket edebilen dünya organizmalarının maksimum kütlesi, kütleçekimin gücünün arttığı oranda azalır. Örneğin yerçekimi Dünya’dakinin 10’da 1’i kadar olan bir gezegende, hayvanların 10 kat daha büyük olma olasılığı vardır.

Tabi bir gezegenin de ne kadar küçük olabileceğine ilişkin bir limit vardır. Çok küçük gezegenler (mesela Dünya’nın kütlesinin onda birinden daha küçük olanlar) atmosferi çekecek ve tutacak kadar kütleçekime sahip olmazlar. Yani bir kez daha Dünya’da gördüğümüz boyutlara yakın büyüklükleri zorunlu kılan bir sınırlama ile karşı karşıyayız.

Yaşamın ayrıca soğutmaya da gereksinimi vardır. Bilgisayar çiplerinde sürekli olarak, hesaplama sırasında ortaya çıkan ısının atılması mücadelesi verilir. Yaşayan canlılar için de aynı konu önem taşır. Büyük hayvanların hacim bölü yüzey alanı (yani deri büyüklüğü) oranı yüksektir. Canlının soğutmasından sorumlu organ deri olduğundan, ısının üretildiği yer de hacim olduğundan, büyük hayvanlar kendilerini soğutmakta daha az verimli olur. İlk olarak 1930’larda Max Kleiber tarafından dikkat çekildiği üzere, Dünya’daki hayvanların kilogram başına metabolik hızı, hayvanın kütlesinin 0,25.kuvveti ile orantılı olarak azalır2. Kuşkusuz ısıtma hızı bu şekilde düşmeseydi, büyük hayvanlar gerçekten de kendi kendilerini pişirirdi. Bir memelinin yaşamını sürdürebilmesi için gözlemlenen minimum metabolik hız, nanogram başına bir watt’ın trilyonda biri kadar  olduğundan3, ısısal açıdan sınırlandırılmış bir maksimum organizma büyüklüğüne ulaşıyoruz: 1 milyon kilogramdan biraz fazla. Bu da yaklaşık olarak mavi balina kadar olmak demektir. Yani tam da Dünya büyüklük rekorunu elinde tutan hayvan kadar…

İlkesel olarak daha büyük yaratıklar hayal edilebilir. Eğer Landauer’in hesaplama için gereken minimum enerjiyi tanımlayan ilkesini hesaba katar ve sadece hücrelerini çoğaltmaya adanmış olan ultra-kütleli, ultra-tembel bir çok hücreli organizma olduğunu varsayarsak, mekanik desteğin ısı taşınımını aşması sorunlarının büyümeyi sınırlayan nihai etken olduğunu görürüz. Bu ölçeklerde böyle bir canlının ne yapacağı ya da nasıl evrilebileceğini de tahmin etmek mümkün değil.

Charles ve Ray Eames’in klasikleşmiş kısa filmleri “10’un Kuvvetleri” (Powers of Ten) 40 yıl kadar önce yayımlanmış ve insanların büyüklükleri kavrayışında derin etkileri olmuştur. Aşağıdaki videoda bu çalışmayı izleyebilirsiniz.

 


Kaynak:

  • Bilimfili,
  • Nautilus, “Can a Living Creature Be as Big as a Galaxy?”
    < http://nautil.us/issue/34/adaptation/can-a-living-creature-be-as-big-as-a-galaxy >

Notlar:
[1] Koch, G.W., Sillett, S.C., Jennings, G.M., & Davis, S.D. The limits to tree height. Nature 428, 851-854 (2004).
[2] Kleiber, M. Body size and metabolism. Hilgardia: A Journal of Agricultural Science 6, 315-353 (1932).
[3] West, G.B., Woodruff, W.H., & Brown, J.H. Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proceedings of the National Academy of Sciences 99, 2473-2478 (2002).

Lazer İle Anıyı Geri Getirmek

5x_brain-plaques-ad-mouse

Hafıza kaybı Alzheimer hastalığının en tehlikeli sonuçlarında bir tanesi. Ancak bunun sebebinin yeni anıları kaydetme yeteneğinin kaybı mı yoksa, kayıtlı anıların hatırlama yetisinin bir kaybı mı henüz bilinmiyor. Bildiğimiz şey ise, hafızayı belirli yöntemler kullanarak geri getirebileceğimiz. Bilim insanları bunun üzerine de kafa yoruyor ve bir grup araştırmacı bunu lazer kullanarak gerçekleştirdi. Alzheimer’ın erken döneminde olan fareler üzerinde yapılan bu deneyin olumlu sonuç vermesi, birçok Alzheimer maduruna umut ışığı olacak gibi duruyor.

Ekip 3 farklı fare tipi üzerinde çalıştı. Üçünün de özelliği genetik olarak Alzheimer hastalığından muzdarip olmaları ve hafıza testlerinde başarısız olmaları. Farelerin hafıza ile ilişkilendirilen beyin bölgelerindeki hücreleri lazer ile uyaran bilim insanları, bu farelerin deney sonrasındaki hafıza testlerinde başarılı olduğunu gözlemledi. Lazer sayesinde hafızada geri kazanım gerçekleşmişti. Deneyin en dikkat çeken kısmı, Alzheimer’lı farelerin beyninde aslında anıların oluştuğunu göstermesi. Ancak hastalık nedeni ile oluşturulan anılara erişim engelleniyor. Ancak belirmekte fayda var, bu hastalık aynı zamanda uzun süreli hafızayı da etkiliyor. Deneyin ardından uygulanan test kısa süreli hafızayı test ediyor sadece.

Deney henüz insanlarda denenmedi, ancak bir zararı varmış gibi durmuyor. Alzheimer’a karşı olan savaşımızda kullanabileceğimiz en güçlü silahlarımızdan birisi olabilir. Çünkü, Alzheimer hastalarının en büyük problemi, hastalık esnasında yaşadıkları hafıza kaybı durumu.

Kaynak:
  • Popsci
  • Dheeraj S. Roy, Autumn Arons, Teryn I. Mitchell, Michele Pignatelli, Tomás J. Ryan & Susumu Tonegawa, Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease Nature 508 | NATURE | VOL 531 | 24 MARCH 2016 doi:10.1038/nature17172

“Dilimin Ucunda” Anlarını Neden Yaşarız ve Nasıl Engelleriz?

Hepimizin başına geliyordur. Konuşmanın tam ortasında, aniden sözcük hazinenizin duvarına çarparsınız. Ve “Neydi bu kelime?” diye düşünmeye başlarsınız. Aslında kelimeyi biliyorsunuzdur ancak bir türlü söyleyemezsiniz. Orada, dilinizin ucuna gelmiş ve yapışıp kalmış haldedir.

İşte bu durumun bilimsel bir ismi var; — tip of the tongue syndrome– dilimin ucunda sendromu. İlk olarak 1890 yılında psikolog William James tarafından isimlendirilen bu sendromun birçok dilde kendine has bir ifadesinin olması; sendromun birçok kültürde yaşandığının da göstergesi aslında. Örneğin; Koreliler bu durumu karşılayan ifade olarak“dilimin ucunda parlıyor” kelime grubunu kullanırken, Estonyalılar bu durum için “dilimin üstünde” ifadesini kullanırlar.

Neden “Dilimin Ucunda” Durumları Meydana Gelir?

Düşünceleri kelimelere dönüştürme işi; oldukça kolay gerçekleştirdiğimizden genellikle basite alınan fakat esasında oldukça karmaşık bir süreçtir. Beyniniz, soyut kavramlardan oluşan düşünceleri önce kelimelere dönüştürür ve ardından bunları uygun seslerle eşleştirir. İşte konuşuyorsunuz. “Dilimin Ucunda” durumlarında ise bu süreç kesintiye uğrar. Normalde kelime hatırlama işi oldukça hızlı ve kolay gerçekleşir ancak “dilimin ucunda” anlarında, sistem çöker ve sıkışıp kalırsınız.

Bu durum sözcüksel hatırlamada geçici bir bozulmanın meydana geldiği psikolinguistik bir süreç olabilir. Bazı araştırmacılar, söz konusu fenomeni;  hafıza çağırma sürecini çarpıklığa uğratan bir şey olarak tanımlıyorlar. Bazıları ise “dilimin ucunda” anlarının; beyindeki hatırlama sürecinin anlık çöküntülerinde ortaya çıkan his olarak tanımlıyorlar.

Geçmişte yapılan çalışmalar; 18 ila 22 yaş aralığındaki insanların “dilimin ucunda” anlarını haftada bir veya iki defa yaşadıklarını, buna karşın daha yaşlıların (65-75 yaş arası) haftada iki veya daha fazla yaşadıklarını ortaya koyuyor. Yaşlanma, uyku eksikliği, anksiyete, alkol ve uyuşturucu bağımlılığı gibi etkenler, fiziksel ve bilişsel sağlığı olumsuz etkilediğinden, “dilimin ucunda” anlarının yaşanma sıklığı da bu durumlarda daha sık görülür.

Bir şeyi hatırlamaya çalıştığınızda, beyniniz hafıza bağlantılarınızı arar ve hipokampus ve diğer beyin bölgeleri “şifrelenmiş” hafızalara erişim sağlamak üzere beraber çalışır. Uzun süreli hafıza, kısa süreli hafızaya göre daha sağlamdır. Yani iki gün önce öğle yemeğinde ne yediğinizi hatırlamak, lise mezuniyetinizi hatırlamaktan daha zordur.

Öte yandan, bir hafızanız üzerinde uzun süre düşünmezseniz, bu hafızayı sonradan hatırlamak daha güç bir hal alır. Yani beyninizde bir yerlerde bu hafıza duruyordur ancak bir süredir onunla ilgili bir bilgiyi kullanmadığınızdan biraz “tozlanmıştır”.

Beyin, etkinliğine bağlı olarak bilgiyi önem sırasına göre koyan bir oda gibidir. Bu odada da “kullan ya da kaybet” prensibi uygulanır. Örneğin telefon numaraları; onları artık hafızanızda tutmanız gerekmez çünkü artık telefonlarınızda kayıtlıdır. Dolayısıyla telefon numaraları hafızanızda önem sırasının gerilerinde bir yerde konumlandırılır. 2015’te Nature‘da yayımlanan biraraştırma; hafızamızın içerisine daha sonra belki kullanılır diye önemsiz bilgi depoladığı bir tür “ne olur ne olmaz klasörü”olduğunu ileri sürüyor. Dolayısıyla artık kullanmadığımız kelimeleri bir süre sonra neden unuttuğumuza dair bu durum bir açıklama getirebilir.

Öte yandan “dilimin ucunda” sendromu her ne kadar yaygın olsa da bu mental sürecin neden kesintiye uğradığı tam anlamıyla bilinmiyor. Ancak yapılan bir başka araştırma “dilimin ucunda” durumlarını kafein alımıyla ilişkilendiriyor.  Söz konusu araştırmada katılımcılara 200 mg kafein ya da kafein için plesebo etkisi oluşturan bir madde veriliyor. Araştırma sonuçları; kafein alan grupta “dilimin ucunda” durumlarını daha fazla deneyimlediklerini ortaya koydu. Sonuçlar, kafeinin, adenozin reseptörlerinde tetikleme oluşturarak fonolojik hatırlama sistemindeki kısa süreli plastisite etkisini arttırıyor.

Öte yandan, sinir bozucu bir biçimde hatırlanmaya çalışılan kelime üzerinde daha fazla düşündükçe, ondan giderek uzaklaşırız. Ancak google’ın kelime tamamlama ya da ilişkilendirme ağı sayesinde bu kelimeyi bazen kolaylıkla da bulabiliriz. Kanada’daki McMaster University’den Doç. Dr. Karin Humphreys’in yaptığı bir araştırma ise bu kelimeyi ileride tekrar unutacağınızı ileri sürüyor.

Lisans öğrencileriyle yapılan çalışmada, araştırmacılar; katılımcılara “dilimin ucunda” durumlarını tetikleyen bir dizi tanım sunarak, katılımcılardan uygun kelimeleri üretmelerini istedi.

Örneğin; “Mağaraları keşfetme sporunun adı nedir?” (İngilizce’de bu spora verilen isim “spelunking” dir. **)

Eğer ki tanım katılımcıyı şaşkına uğratırsa ve katılımcıyı “dilimin ucunda” durumuna sokarsa, katılımcılara üzerinde biraz düşünmeleri için biraz zaman verildi. Eğer katılımcı kelimeyi hatırlamazsa, araştırmacılar kelimeyi söylüyorlardı. Deney; aynı katılımcılar, aynı tanımlama ve aynı kelimelerle çeşitli aralıklarla tekrarlandı ve katılımcıların bir sonraki seferde kelimeyi hatırlayıp hatırlamama durumları arasında bir değişiklik meydana gelip gelmediği gözlemlendi. Fakat ilginç bir biçimde bir hafta sonra da yapılsa 5 dakika sonra da yapılsa bir şeyin değişmediği görüldü. Birçok insan aynı kelimelerde tekrar tekrar “dilimin ucunda” anlarını deneyimledi.

Araştırmacılar; elde ettikleri sonuçların yapılan hataların bu hataları güçlendirme eğiliminde olduğu ve tekrar ortaya çıkmasına sebep olduğu düşüncesine destek sunuyor. Yani, ismini unuttuğunuz bir aktörün veya aktrisin ismini hatırlamak için IMDB’ye başvurduğunuzda aslında unutkanlığınınızı daha da derinleştirerek hatanızı güçlendiriyorsunuz.

“Dilimin Ucunda” Durumlarını Nasıl Engelleyebilirsiniz?

Yeni yapılan araştırmalar bu durumları engellemeye dair bazı potansiyel çözümler sunuyor. Örneğin Humphreys’in çalışmasında; katılımcılar kendi başlarına kelimeyi hatırlamakta güçlük çektiğinde katılımcılara doğrudan cevabı söylemek yerine hatırlamalarına yardımcı olmanın; bir sonraki seferde kelimenin unutulmasını engelleyebildiği sonucuna ulaşıldı. Yani katılımcıya fonolojik bir ipucu verildiğinde, örneğin; kelimenin ilk birkaç harfini söylemek gibi; bu şekilde, eğer ki katılımcılar kendi başlarına kelimeyi oluşturabilirlerse bir sonraki sefere kelimeyi hatırlamaları daha mümkün hale geliyor.

Çünkü, temel düzeyde beynimiz ağ yapısındadır ve her işlem için yeni ağlar kurulur. Söz konusu kelimenin hatırlanması için de basit anlamda ağlar kurulmalıdır. Bu durumu şöyle izah edebiliriz; örneğin, A-B-C şeklinde bir yol örgüsü olsun ve C noktası bizim çıktı noktamız olsun. Çıktı noktamız olan C noktasına ulaşmak için A, B ve C noktaları arasında yol inşa etmemiz gerekir. Kelimeyi doğrudan söylemek, C noktasındaki çıktıya sıçramalı bir erişim sağlar. Ancak hatırlamaya yardımcı olmak ise A’dan B’ye bir yol kurulmasına ve nihayetinde de B’den C’ye bir yol kurulmasına sebep olur ve böylelikle de A-B-C örgüsü tamamlanmış olur. Sıçramalı hatırlatmalar, bağlantı kopukluğuna sebep olacağından ileride hatırlamayı güç hale getirecektir, ancak hatırlatmaya yardımcı olmak ise eksik bağlantıların kurulmasını ve yol örgüsünün tamamlanmasını sağlayarak hatırlamayı bir sonraki sefer için daha muhtemel hale getirecektir.

Dolayısıyla, bir sonraki sefere, dilinizin ucundai kelimeyi yakalamakta güçlük çekerseniz, çevrenizdeki insanlardan size bu bağlantıların kurulması noktasında yardımcı olmasını isteyin. Ne söylemeye çalıştığınızı açıklayın ve onlardan ipucu isteyin.

**Günümüzde sportif anlamda mağaralara girenler kendilerini mağaracı ya da yaygın olarak kullanılmayan bir terim olan “spelunker” olarak adlandırmaktadırlar. Mağaralara ama amatör ama bilimsel açıdan gözlem, araştırma ve keşif amacıyla girenlere ise “speleolog” denilmektedir.


Kaynaklar ve İleri Okuma: Bilimfili
– Lesk, Valerie E., and Stephen P. Womble. “Caffeine, priming, and tip of the tongue: evidence for plasticity in the phonological system.” Behavioral Neuroscience 118, no. 3 (2004): 453.
– Brown, Roger, and David McNeill. “The “tip of the tongue” phenomenon.”Journal of verbal learning and verbal behavior 5, no. 4 (1966): 325-337.
– Schwartz, Bennett L., and Janet Metcalfe. “Tip-of-the-tongue (TOT) states: retrieval, behavior, and experience.Memory & Cognition 39, no. 5 (2011): 737-749. http://www.columbia.edu/cu/psychology/metcalfe/PDFs/Schwartz_Metcalfe_inPress.pdf
– Cleary, Anne M., and Alexander B. Claxton. “The tip-of-the-tongue heuristic: How tip-of-the-tongue states confer perceptibility on inaccessible words.Journal of Experimental Psychology: Learning, Memory, and Cognition 41, no. 5 (2015): 1533. https://www.apa.org/pubs/journals/features/xlm-0000097.pdf

Diğer Primatlardan Farkımız Beynimizdeki Asimetrik Oluk

Kavramsal çerçeve: Asimetri, oluk ve kıvrım

Merkezi sinir sisteminde “asimetri”, iki hemisferin biçimsel (morfolojik) ya da işlevsel (fonksiyonel) olarak tam örtüşmemesini ifade eder. Serebral korteksin yüzey mimarisi iki temel morfolojik motif üzerinden tanımlanır:

  1. gir(us) (Lat. gyrus, “halka, kıvrım”;
  2. Yun. gyros) ve sulk(us) (Lat. sulcus, “saban izi, oluk”).

Bu çift motifin kombinasyonu, sinir dokusunun yüzey alanını arttırıp bağlantısal kapasiteyi optimize eder. “Temporal” terimi Latincede tempus (şakak) kökünden gelir; üst temporal oluğun (sulcus temporalis superior, STS) lateral yüzeyde yayılan hattı, işitme, konuşma-ilişkili çözümleme, yüz-ses tanıma ve sosyal ipuçlarının bütünleşmesi gibi süreçler için çok-ortamlı (multimodal) bir düğümdür. Broca alanı (Brodmann 44/45), adını 19. yüzyıl cerrah-antropolog Paul Broca’dan alır ve konuşma üretimi ile sözdizimsel işlemlemeyle ilişkilendirilir. Heschl girusu (birincil işitsel korteksin çekirdeği) ise Avusturyalı anatomist Richard Heschl’ın adıyla anılır.

“Üst Temporal Asimetrik Çukur” (STAP): Tanım, yerleşim ve ölçüm

İnsan beyninde Heschl girusunun ventralinde ve üst temporal oluğun kalbinde, yaklaşık 4–5 cm’lik, sağ hemisferde daha derin izlenen belirgin bir mikromorfolojik çöküklük tanımlanmıştır: Üst Temporal Asimetrik Çukur (Superior Temporal Asymmetrical Pit; STAP). Bu çukur, sağda ses niteliği, yüz-ses eşleştirme ve niyet-inanç çıkarımı (zihin kuramı) gibi sosyal algı bileşenlerine aracılık eden STS alt-bölgeleriyle anatomik komşuluk içindedir; solda ise konuşmanın akustik-fonolojik ve giderek daha dile-özgü hâle gelen çözümlemesini sırtlayan kuşakla karşılıklıdır. Morfometrik olarak STAP, “oluk derinliği” (sulcal depth) ve “oluk taban genişliği” gibi metriklerle kuantifiye edilir; yüzey tabanlı morfometri (freesurfer benzeri boru hatları), katmanlı mesh-haritalama ve grup-düzeyi sulkal izohipslerin karşılaştırılması sık kullanılan yöntemlerdir.

Karşılaştırmalı perspektif: Şempanzede durum, insana özgüllük derecesi

Karşılaştırmalı MRG analizleri, STAP’ın insanda güçlü bir sağ-sol derinlik asimetrisi gösterdiğini; şempanzede ise bu izlek/vurgu ya zayıf ya da yok denecek kadar nadir olduğunu ortaya koymuştur. Bu bulgu, insan beyninde sağ STS’nin doku düzenlenişinin (laminar/sütunsal mikromimarinin ve bağlantısal kalıpların) farklı bir şekillenme (patterning) sürecinden geçmiş olabileceğini düşündürür. Dikkate değer bir nokta, bu asimetrik işaretin bebeklikten erişkinliğe süreklilik göstermesi ve el tercihi ya da klasik dil yanallaşması örüntülerinden bağımsız biçimde gözlenebilmesidir; bu da gelişimsel programın erken dönemlerde (fetal/erken postnatal) kurulduğunu ima eder.

Fonksiyonel bağlam: Sağ STS, sosyal biliş ve multimodal bütünleşme; sol STS, dil ve konuşma

Fonksiyonel çalışmalarda sağ STS, yüz-göz bakışı, biyolojik hareket, ses kimliği ve prosodi gibi sosyal ipuçlarını bütünleştiren bir “hub” olarak öne çıkar. Sol STS boyunca ise akustik karmaşıklıktan fonolojiye ve oradan dilsel işlemlemeye uzanan bir hiyerarşi tanımlanır. STAP’ın sağda daha derin olması, ses-yüz, ses-jest ve bağlamsal niyet çıkarımı gibi multimodal süreçlerin insanda genişlemiş bir işlevsel alt-yapısına işaret edebilir. Bu çerçevede STAP, konuşma (speech) ve dil (language) ile sosyal bilişin (social cognition) kesişiminde yer alan, iletişimin içerik ve niyet boyutlarının eşzamanlı kurgulanmasına destek veren bir morfolojik belirteç olarak değerlendirilebilir.

Broca alanı ve STS/STAP ilişkisi: Ayrışma ve birlikte-çalışırlık

Klasik modelde Broca alanı “ifade edici” dil ile, Wernicke/üst temporal kompleks ise “alımsal” dil ile özdeşleştirilmişti. Güncel ağ-temelli çerçeveler, fronto-temporo-parietal bir konuşma-dil ağı tarif eder. Bu ağda sol inferior frontal (Broca) düğümler sıralama/bağlama (sequencing/binding) ve sözdizimsel işlemlere, üst temporal düğümler ise fonolojik-semantik eşleştirmeye ve konuşma algısına aracılık eder. STAP, bu dorsal-ventral yolların temporal uç noktasına yakın konumuyla, dil ve sosyal ipuçlarının eş-zamanlı bütünleşmesinde morfolojik bir “işaret direği” (landmark) işlevi görür.

Gelişimsel ve genetik ipuçları

Sulkal morfogenez, kortikal levhanın büyüme anizotropileri, aksonal çekiş (tension-based folding), tabaka-spesifik proliferasyon ve bağlantısal kısıtların birlikte etkisiyle şekillenir. STAP’ın erken ortaya çıkışı, bu çukurun gelişimsel programlanmış bir özellik olduğuna işaret eder. İnsanlarda üst temporal asimetriyle ilişkili regülatör bölgeler (ör. DACT1 ile ilişkili bir enhancer) rapor edilmiştir; bu düzenleyici motiflerin ekspresyon farkları, sağ-sol derinlik asimetrisinin moleküler temelini kısmen açıklayabilir. Bu bağlam, FOXP2 gibi “tek-gen-tek-özellik” açıklamalarından ziyade, çok-genli ve düzenleyici-ağ odaklı bir evrimsel mimariyi destekler.

Evrimsel yorumsama: Neden insanlarda “sağ-ağır” bir STS çukuru?

Paleoantropolojik ve bilişsel arkeoloji verileri, alet yapımı, taklit becerileri, ortak dikkat ve temsili iletişimin artan karmaşıklıkta bir eş-evriminin yaşandığını gösterir. Bu eş-evrim, sosyal grup büyüklüğü, öngörü-planlama, niyet okuma ve sesli-jestsel sinyalizasyonun birlikte optimize edilmesini gerektirir. Sağ STS/STAP derinliğinin artması, bu multimodal sosyal iletişim gereksinimlerine bağlantısal verimlilik (ör. daha kısa yollar, daha yoğun lokal kümeleşme) ve işitsel-görsel eşleştirmede gürültüye dayanıklılık sağlayacak şekilde uyarlanmış olabilir. Morfolojik derinliğin, altta yatan kıvrım-içi yüzey alanını artırarak nöronal-glial altyapı için ek hacim ve daha zengin bağlantısal mikromimari sunması akla yakındır.

Klinik ve bireysel farklılıklar: Nörotipikler ve “atipikler”

STAP asimetrisinin cinsiyet, el tercihi, dil yanallaşması ve hatta bazı nörogelişimsel farklılıklar (ör. otizm spektrumunda heterojen biçimde) boyunca sürdüğü rapor edilmiştir. Bu durum, özelliğin “yalnızca tek bir bilişsel modül”e indirgenemeyeceğini; bunun yerine iletişimin çoklu bileşenlerine katkıda bulunan bir yapısal zemin sunduğunu düşündürür. Yine de birey-içi değişkenlik yüksektir: Asimetri derecesi ile belirli bilişsel alt-ölçekler arasında probabilistik ilişkiler bulunur; deterministik haritalar beklemek hatalı olur.

Yöntemsel notlar: Nasıl saptanıyor?

  • Yüksek-çözünürlüklü T1-ağırlıklı MRG ve yüzey-bazlı yeniden yapılandırma (kortikal mesh).
  • Sulkal derinlik haritaları ve yerel eğrilik ölçütleri; grup-düzeyi sulkal şablonlarla eşleştirme.
  • Gelişimsel kohortlar (yenidoğan-çocuk-erişkin) ve karşılaştırmalı örnekler (şempanze vb.).
  • Bağlantısal eşleştirme: Dinlenim-durumu işlevsel bağlantısallık (rs-fMRI) ve difüzyon temelli lif anatomisi ile morfoloji-bağlantısallık korelasyonları.
  • Genotip-fenotip eşleştirmesi: Düzenleyici bölgelerin varyantları ile sulkal metriklerin ilişkilendirilmesi.

Broader nörobilimsel bağlam: Lateralizasyonun yeniden okunması

İnsan beynindeki yapısal-işlevsel asimetri yalnızca “sol-dil / sağ-mekânsal” dikotomisi ile açıklanamaz. STAP gibi mikromorfolojik işaretler, sağ hemisferin sosyal-işitsel vurgusunu ve sol hemisferin dilsel-dizgesel vurgusunu birbirine eklemleyen bir mimariye işaret eder. Bu, dilin yalnızca sembolik değil, aynı zamanda sosyal etkileşimsel doğasını (prosidik ipuçlar, konuşmacı niyeti, alıcıya uyum) yansıtır. Böyle bir çerçeve, Cambridge geleneğinden bilişsel arkeoloji ve nöroarkeoloji yaklaşımlarıyla da uyumludur: Beynin maddi kültürle ortak evrimi, morfolojik “işaret direkleri” üzerinden izlenebilir.

Açık sorular ve araştırma yönleri

  • Nedensellik: STAP derinliği, sosyal-dilsel performansın nedeni mi, belirteci mi? Gelişimsel boylamsal ve genetik-nedensel (ör. Mendelyan rasgeleleme) çalışmalar gereklidir.
  • Bağlantısal mekanizma: Derinliğin artışı, yerel mikromimari (katman-spesifik piramidal yoğunluk, interneuron dağılımı) ve uzun-menzilli lif demetleri (arcuatus, SLF/temporal uçlar) ile nasıl bağlanıyor?
  • Türler arası çeşitlilik: Şempanze dışında bonobo, makak ve insansı maymunlar spektrumunda STAP benzeri motiflerin seyreklik/şiddet dereceleri nedir?
  • Bilişsel haritalama: Prosodi, yüz-ses eşleşmesi, zihin kuramı alt-bileşenleri ile bölgesel STAP ölçümleri arasındaki ince taneli (fine-grained) eşleşmeler nasıl modellenebilir?
  • Hastalık-ilişkisi: Sosyal iletişim ve dilin etkileşimli bozuluşunu gösteren durumlarda (ör. afazilerde sosyal pragmatik etkilenim, şizofrenide niyet çıkarımı bozukluğu), STAP metrikleri biyobelirteç olabilir mi?



İleri Okuma
  1. Stout, D., Toth, N., Schick, K., & Chaminade, T. (2008). Neural correlates of Early Stone Age toolmaking: technology, language and cognition in human evolution. Philosophical Transactions of the Royal Society B, 363(1499), 1939–1949.
  2. Renfrew, C. (2012). Towards a Cognitive Archaeology. In Handbook of Cognitive Archaeology: Psychology in Prehistory (pp. 15–30). Routledge.
  3. Leroy, F., Cai, Q., Bogart, S. L., Dubois, J., Coulon, O., Monzalvo, K., Fischer, C., Glasel, H., Van der Haegen, L., Bénézit, A., Lin, C.-P., Kennedy, D. N., Ihara, A. S., Hertz-Pannier, L., Moutard, M.-L., Poupon, C., Brysbaert, M., Roberts, N., Hopkins, W. D., Mangin, J.-F., & Dehaene-Lambertz, G. (2015). New human-specific brain landmark: The depth asymmetry of superior temporal sulcus. Proceedings of the National Academy of Sciences (PNAS), 112(4), 1208–1213. https://doi.org/10.1073/pnas.1412389112
  4. Beauchamp, M. S. (2015). The social mysteries of the superior temporal sulcus. Trends in Cognitive Sciences, 19(9), 489–490.
  5. Deen, B., Koldewyn, K., Kanwisher, N., & Saxe, R. (2015). Functional Organization of Social Perception and Cognition in the Superior Temporal Sulcus. Cerebral Cortex, 25(11), 4596–4609.
  6. Le Guen, Y., et al. (2019). A DACT1 enhancer modulates brain asymmetric temporal regions in humans. bioRxiv (Preprint). https://doi.org/10.1101/539189
  7. Kausel, L., et al. (2024). The role of the left superior temporal sulcus in social communication. Neuroscience & Biobehavioral Reviews, 160, 105322.
  8. Sanders, R. (2025). Are groovy brains more efficient? Berkeley News.

Alışkanlıkları Beynimizde Nasıl Oluşturuyoruz ve Onlardan Nasıl Vazgeçiyoruz?

Bütün alışkanlıklar kötü değildir. Ve hatta bazıları gereklidir. Örneğin; otomatiğe bağlayarak eve gidiş yolunu bulmamız ya da yıkamanın her adımını düşünmeden ellerimizi yıkayabilmek iyi şeylerdir. Fakat alışkanlık olarak sürdürdüğümüz bazı şeylerin bir bağımlılık noktasına gelmesi veya hayatımızın günlük akışını engelleyen bir hale evrilmesi bizi obsesif-kompulsif bozukluğa hapsedebilir.

Araştırmacılar, alışkanlıkların davranışlarımızı kontrol ettiğinde beynimizde neler olduğunu araştırmak üzere fareler üzerinde çalışmalar yürüttüler.

Neuron ‘da yayımlanan çalışma bugüne kadar ki en güçlü delilleri sağlayarak; beynin alışkanlığa bağlı ve amaca yönelik davranışlardan sorumlu –beynin karar verme bölgesi olanorbitofrontal korteksteki–  devrelerini ve amaca yönelik devre üzerinde bir tür fren gibi davranarak bütün sorumluluğu alışkanlığa devreden endokanabinoidler gibi nörokimyasalları kontrol etmeyi amaçladı.

Endokanabinoidler insanlar ve diğer hayvanlar tarafından doğal olarak üretilen bir kimyasal grubudur. Endokanabinoid reseptörleri vücut ve beyin boyunca bulunur ve endokanabinoid sistem; açlık, ağrı hissi, mod ve hafızanın da içerisinde olduğu çeşitli fizyolojik süreçleri içerir. Bu sistem aynı zamanda da kanabisin psikoaktif etkilerine aracılık eder.

Geçmişte yapılan çalışmalarda; orbitofrontal korteksin (OFC), amaca yönelik davranışlarda bilgiyi yeniden aktarmada görevli önemli bir bölge olduğu gösterilmişti. Söz konusu bu araştırmada OFCdeki nöron veriminde optogenetik kullanılarak (temel olarak nöronun ışık flaşları ile açık ve kapalı hale getirilmesi ile) yapılan artışlar ile amaca yönelik davranışların artırılabildiği bulgusuna erişilmişti. Tersi biçimde de, kimyasal bir yaklaşımla aynı bölgedeki aktivite azaltıldığında, amaca yönelik davranışlarda aksama meydana getiriliyor ve fare alışkanlığa dayalı hale geliyordu.

Yani orbitofrontal korteks yatıştırıldığında; kontrolü, alışkanlıklar ele alıyor.

aliskanliklar-insan-beyni-bilimfilicom

Geçmişte yapılan çalışmalarda; orbitofrontal korteksin (OFC), amaca yönelik davranışlarda bilgiyi yeniden aktarmada görevli önemli bir bölge olduğu gösterilmişti.

Bu araştırmada ise, madem ki endokanabinoidler genel olarak nöron aktivitesini azaltıyordu, o halde araştırmacılar endokanabinoidlerin OFC’deki aktiviteyi yatıştırabileceği ya da azaltabileceği ve bununla da amaca yönelik davranışlara geçiş yapılabileceği hipotezini kurdular. Dolayısıyla da ekip; orbitofrontal korteksten çıkarak dorsomedial striyatuma giren nöronlara odaklandılar.

Bu doğrultuda da, fareler; farklı yargılarla şekillenen –amaca yöneliğe karşı alışkanlığa dayalı davranışlar- iki farklı çevrede aynı kolu bastırarak aynı ödülü aldığı bir deney düzeneği için eğitildiler. Tıpkı herhangi birnöropsikiyatrik bozukluğu olmayan insanlar gibi sağlıklı fareler de amaca yönelik davranışa karşı alışkanlığa dayalı davranış stratejisini kullanarak aynı eylemler arasında kolaylıkla geçiş yapabilecekti. Yani, girişte verdiğimiz eve gitme örneğindeki gibi, yeni ya da farklı bir yere gitmeye ihtiyaç duyduğumuzda, eve gidiş için açık olan otomatik pilotumuzu kapatarak amaca yönelik davranışa kolaylıkla geçiş yapabiliriz.

Endokanabinoidlerin rol aldığı hipotezlerini test etmek için, araştırmacılar; önce OFC-striyatum yolundaki kanabinoid tip 1 (CB1) isimli bir endokanabinoid reseptörünü sildiler. Böylelikle de bu reseptörü olmayan fareler alışkanlıklar oluşturamadılar, bu da bize nörokimyasalların ve geçiş yollarının kritik bir role sahip olduğunu gösteriyor.

Amaca yönelik eylemlerimiz ve alışkanlığa dayalı eylemlerimiz arasında bir dengeye ihtiyaç duyarız. Her gün yaptığımız şeyler için, oldukça hızlı ve etkili rutinler oluşturabilmeliyiz ve tam bu noktada da alışkanlıklarımız bu amaca hizmet eder. Öte yandan değişen koşullarla da karşılaşırız ve tam bu noktada da alışkanlıklarımızdan vazgeçme ve güncellenmiş bilgiye dayalı amaca yönelik eylemler gerçekleştirebilme kapasitesine ihtiyaç duyarız. Bunu yapamadığımızda da, yıkıcı sonuçlarla karşı karşıya kalabiliriz.

Araştırma bulguları, obsesif-kompulsif bozukluğa ya da bağımlılığa sahip insanlar için yeni bir iyileştirici hedefe işaret edebilir. Yani, alışkanlıklara aşırı bağımlılığı durdurmak ve alışkanlığa dayalı eylemden amaca yönelik eyleme geçiş yapabilme kapasitesini iyileştirmek için, beynin endokanabinoid sistemini iyileştirmek bu noktada yardımcı olabilir ve böylelikle de alışkanlıkların davranışlar üzerindeki kontrolü azaltılabilir. Bu tedavi, ilaç kullanımı şeklinde ya da davranışsal terapi şeklinde olabilir, ancak bunun için de daha fazla araştırmaya ihtiyacımız var.


Kaynak:

  • Bilimfili,
  • UCSD. “How the Brain Makes and Breaks Habits.” http://neurosciencenews.com/endocannabinoids-habits-4318/ (accessed May 26, 2016).
  • Christina M. Gremel, Jessica H. Chancey, Brady K. Atwood, Guoxiang Luo, Rachael Neve, Charu Ramakrishnan, Karl Deisseroth, David M. Lovinger, Rui M. Costa Endocannabinoid Modulation of Orbitostriatal Circuits Gates Habit Formation Neuron  DOI: http://dx.doi.org/10.1016/j.neuron.2016.04.043 showArticle Info