Mitokondri Bulundurmayan İlk Ökaryot Hücre Keşfedildi

Her bir dokusu ve organı, o organın görev ve işleyişini sürdürebilen, gerçekleştirebilen birbirinden farklı hücrelerden oluşmuştur. Ancak her ne kadar farklı olsalar da, temelde aynı organelleri bulunduran hücrelerimiz, çoğunlukla farklı genleri aktifleştirdikleri, inaktifleştirdikleri, bir takım genlerden daha fazla veya daha az protein sentezledikleri için birbirlerine göre farklılaşırlar. Elbette bu özet hücrelerin birbirinden farklılıklarını bütün detayları ile anlatmıyor, keza bu yazıda ökaryot tüm hücrelerde ortak olarak var olduğunu düşündüğümüz mitokondri ile ilgileneceğiz.

Tüm hayvanlar, tüm bitkiler, mantarlar ve birçok mikroskobik canlı ökaryot hücrelerden oluşur. Ökaryot hücre tipi ise diğer bir hücre tipi olan prokaryot hücre tipinden, zarlı organeller bulundurabilmesi ve bulundurması bakımından ayrılmaktadır. Mitokondri, lizozom, hücre çekirdeği ve kloroplast bunlardan yalnızca birkaç tanesidir. Bitki, hayvan ve mantar hücreleri bahsi geçen tüm zarlı organelleri ortak olarak bulundurmazlar. Hayvan hücrelerinde örneğin; bitkilerde bulunan kloroplast organeli bulunmaz. Buna karşılık mitokondrinin tüm ökaryot hücrelerde ortak olarak bulunduğunu düşünürken, yeni bir araştırmada mitokondrisinden kurtulmuş ilk ökaryot canlı keşfedildi.

Mitokondri olmadan yaşamayacaklarını düşündüğümüz ökaryot hücreler ve ökaryot hücrelerden oluşan canlılar açısından bakıldığında keşfin önemi daha iyi anlaşılabilir. Hücrenin enerji santrali gibi çalışan mitokondri organelinin, erken evrimsel süreçte bazı hücre yapılarının içine girmiş bakterilerin kalıntıları olduğu çok geniş bir kitle tarafından öne sürülmektedir. Bu yönden ökaryot hücrelerin bir anlamda imzası olduğunu düşündüğümüz bu organelin, aslında sanıldığı kadar zorunlu olmayabileceği görülmüş oldu. Daha önceleri de araştırılan -mitokondrisiz ökaryot hücrelerin varlığı- konusu için bugüne kadar başarılı bir örnek bulunamamıştı.

Yapılan araştırmada, araştırmacılardan birine ait olan bir çinçillanın (amerika tavşanı) bağırsaklarından elde edilen Monocercomonoides cinsinden mikrobik bir canlı test edildi. Bütün genomu dizilenen canlının araştırılmasının sebebi ise, daha önceden de mitokondrilerinden kurtuldukları düşünülen cinse ait olmasıydı.

Genomu dizileyen ve inceleyen araştırma ekibi, mitokondrilerin kendine has olan DNA’lara sahip organeller olmalarına bakarak mitokondriyel genlerin varlığına dair izler aradı ve genomda buna dair bir ize rastlanmadı. Daha detaylı incelemeler, canlının genomunda mitokondrinin düzgün işlemesini sağlayacak kilit bir takım proteinlerin de eksik olduğu görüldü.

Monocercomonoides‘in, bizzat zarar vermediği bağırsakta yaşadığı için mitokondriye ihtiyaç duymuyor olabileceğini öne sürülüyor. Burada kendisi için de besin bol bulunmasına rağmen, mitokondrinin enerji üretiminde kullanacağı oksijen son derece az olabiliyor. Dolayısıyla Monocercomonoides, mitokondri yerine hücre içinde bulunan ve besinleri parçalayarak enerji üretmelerini sağlayan enzimler sayesinde yaşamını sağlıklı olarak sürdürebiliyor. Bununla birlikte, bu cins mitokondrinin diğer bir görevi olan proteinlerin sağlıklı enzimler olarak çalışmalarını sağlayacak olan yardımcıları (demir ve sülfür gibi) kümeler halinde sentezlemesinden de mahrum kalmış oluyor. Yapılan ileri incelemeler Monocercomonoides türünün, bu konuya aynı fonksiyonu gösteren bir takım bakteriyel genleri bünyesine katarak bir çözüm getirdiği görüldü.

Çığır açıcı nitelikteki bu araştırma Current Biology‘de tüm detayları ve sonuçları ile yayımlandı.


Kaynak :

  • Bilimfili,
  • Anna Karnkowska, Vojtěch Vacek, Zuzana Zubáčová, Sebastian C. Treitli, Romana Petrželková, Laura Eme, Lukáš Novák, Vojtěch Žárský, Lael D. Barlow, Emily K. Herman, Petr Soukal, Miluše Hroudová, Pavel Doležal, Courtney W. Stairs, Andrew J. Roger, Marek Eliáš, Joel B. Dacks, Čestmír Vlček, Vladimír Hampl A Eukaryote without a Mitochondrial Organelle Current Biology DOI: http://dx.doi.org/10.1016/j.cub.2016.03.053

Sonik Kirpi: Parmak Yaratma Sürecinin Ardındaki Genler, Çalışma Prensipleri ve Evrim

Ana rahmindeki gelişimin 51. günündeki bir bebeğin parmakları…
Yazımıza bir uygulamayla başlayalım. Başparmağınızı avuç içinize doğru kıvırın veya işaret parmağınıza yapışık tutun. Hatta uygulamanın daha gerçekçi olması için başparmağınızı ya avcunuzun içine ya da işaret parmağınıza bir bant yardımıyla sabitleyin. Elinize de günlük hayatımızın vazgeçilmezi olan cep telefonunuzu alın. Göreceksiniz ki başparmağınız olmaksızın kullanmak imkânsız olacak… Hayat ne kadar da zor olurdu değil mi başparmağımız şu anki konumundan farklı olsaydı ya da hiç var olmasaydı! Şimdi de bir su bardağını tutmaya çalışın başparmağınız olmaksızın. Yine göreceksiniz ki bardağı bu haldeyken tutmak normal haldekinden çok daha zor. Bunlar en basitinden bizim çağımızın sorunları… Ancak aynı sorunlar, doğada da benzer karşılıklara sahiptir: başparmağımız olmaksızın alet üretmemiz imkansıza yakın olacaktır. Hatta başparmağımız olsa; ancak şu anda yapabildiğiniz gibi diğer 4 parmağın karşısına gelemese bile bir alet üretmeniz, onu yetkinlikle kullanmanız, şu andakinden çok daha zor olurdur.
Doğanın acımasız olduğu bir gerçektir. Her ne kadar bizler doğanın bu acımasızlığını bir nebze yenmiş olsak da, oralarda bir yerlerde hala bir kovalamaca, hala bir yemek bulma/canını kurtarma mücadelesi devam ediyor. Bu açıdan baktığımızda ise, yaşamı kolaylaştıran her uzuv av/avcı için bir avantaj demek oluyor. Bir primat için ise tutunmayı, kavramayı kolaylaştıran bir “parmağın”, yani sadece 5-10 santimetre uzunluğundaki bir uzvun önemi oldukça büyük oluyor.
Birçok canlı, ana rahminden veya yumurtadan çıkmadan, çok ciddi değişimlerden geçiyor. Örneğin insanlar, bizi “insan” yapan fiziksel özelliklerin büyük bir kısmını ana rahminde geçirdikleri zamanların son birkaç ayında kazanıyor. Bu nedenle, başparmak gibi hayati bir organın evrimini anlamak için, embriyomuzu tanımamız gerekiyor. Bunun içinse, ana rahmine geri dönmemiz gerekiyor!
Farklı canlı türlerinin 3 ayrı evredeki embriyo karşılaştırması…
Doğadaki tüm canlıların ortak bir atadan geldiği gerçeğini düşündüğümüzde yukarıdaki farklı türlerin 1-2 haftalık olan embriyolarının benzer olması son derece doğaldır. Ayrıca, memeliler ve sürüngenler arasında ufak farklılıklar ile birlikte hayvanların embriyolojik gelişim süreçleri de son derece benzerlik göstermektedir. Bir memeli için bu gelişim sürecini 4 basamağa ayırabiliriz;
Bölünüm: Bu aşamada hızlı bir şekilde mitoz bölünmeler serisi gerçekleşir fakat orijinal zigotta bir büyüme gözlenmez. İnsanların gelişimi sırasında bu aşamada 4-8 hücre oluşur. Bu dönemi art arda gelen 5 bölünme sonucu üretilen 32 hücrenin oluştuğu morulla evresi izler.
Blastula: 128 hücreden (7 bölünme sonrası) oluşan embriyoya blastula denir. Bu aşamada artık hücreler farklılaşmaya başlar ve vücut boşluğunun temelleri atılır. Bu boşluk oluşumuna memelilerde “blastosit” denir. Bu aşamayı gastrula izler.
Gastrula: Bu aşamada eşey tabakalarının gelişimi tamamlanır. Bu tabakalar ektoderm (en dıştaki tabaka), endoderm (en içteki tabaka) ve mezodermdir. Gastrulanın yapısını aşağıda görebilirsiniz.
Embriyonun evreleri…
Organ oluşumu (organogenez): Bir önceki aşamada oluşan eşey tabakalarının artık farklılaşıp gruplanarak organları oluşturmaya başladığı evredir. Ektoderm tabakası farklılaşarak, sinir dokuyu, deri ve deriden türeyen yapıları, korneayı ve göz lenslerini; endoderm farklılaşarak, tiroid paratiroid ve timus bezlerini, üreme bezlerinin epitel dokusunu, üretra ve sidik kesesinin epitel dokusunu; mezoderm ise farklılaşarak, iskelet, düz ve kardiyak kaslarını, kan, kemik iliği ve lenfoid dokuyu ve ürogenital sistem organlarını oluşturur.
İnsan bebeğinin gelişim aşamaları…
Fotoğraftan da görebileceğiniz gibi, 17. haftanın sonunda bir insan embriyosunda bazı uzuvların şekilleri belli ölçüde seçilebilir duruma gelmiş oluyor. Bu da yine organogenez ile başlayan “hücre farklılaşması” sürecinin bir parçası. Bu farklılaşmayı daha iyi anlamak için görüş açımızı biraz daha genişletmemiz gerekiyor.
Biraz önce de söylediğimiz gibi, bu gelişim 2 farklı üreme hücresinin birleşmesi sonucu oluşan ve tek bir hücre olan zigottan başlayarak devam etmektedir. Tahmin edebileceğiniz gibi, zigotun da kendine has bir genetik kodu var ve bölünüm aşamasında yalnızca mitoz bölünme geçirerek aynı genetik koda sahip hücreler oluşturuyor. Yani, bizim şu anki genetik kodumuz aslında daha bizler zigot iken belliydi. Ayrıca, vücudumuzun herhangi farklı dokusundan alınacak olan hücrelerde de yine zigot ile ve birbiri ile aynı genetik koda sahip olduğu da görülebilir. Fakat bu kod her hücrede aynı olmasına rağmen, hücrelerin görevlerinin birbirinden farklı olması durumu söz konusudur. Bu durumu da “gen ifadesi” denen bir süreç ile açıklayabiliriz.
Gen İfadesi
Gen ifadesi, özetle, hücre içinden ve/ve ya dışından gelen özel sinyaller sonucu genetik olarak kodlanmış olan ürünlerin üretilmesidir (bu ürünler bazı istisnai durumlarda protein-harici moleküller olsalar da, çoğu zaman proteindirler; bu nedenle yazımızın geri kalanında bu ürünlerden “proteinler” olarak bahsedeceğiz). Bu sürecin bir hücreye ve ya hücre grubuna en büyük getirisi çevre koşullarına uyum sağlamalarını kolaylaştırıyor olmasıdır. Sürecin yardımıyla canlının doğaya uyum sağlayabileceği özellikler, yetenekler oluşuyor. Bu özelliklere sahip canlılar hayatta kalıyor, çevreye uyum sağlayabiliyor. Evrimsel açıdan bakacak olursak, çevreye uyum sağlamanın önemi kuşkusuz ki çok büyük. İşte bu süreç sayesinde ortama uyum sağlamış olan hücreler nesillerini devam ettirmiş ve bu sürece sahip olan hücreler seçilmiştir.
Gen ifadelerinin kontrol edilmesi süreci iki aşamada incelenebilir: Okuma (transkripsiyon) ve dönüştürme (translasyon). DNA’dan elde edilen RNA kopyalarının üretilme sürecine transkripsiyon denir ve bu süreç ökaryotlarda üç ayrı RNA polimeraz enzimi tarafından gerçekleştirilir ve her enzim ayrı bir görev üstlenir.
RNA Polimeraz Enzimi’nin çalışması…
Görselden de görebileceğiniz gibi, RNA polimeraz enzimi (RNAP) DNA üzerinde hareket eder ve okunması gereken yerleri, yani aktif kısımları okuyarak RNA için uygun bir hale getirir. RNA polimeraz okunması gereken kısmın sonunda geldiğinde durarak görevini tamamlar. Bu süreci başlatan sinyallere “transkripsiyon faktörleri” denir. Bu aşamayı genetik bilginin proteine çevrilme süreci, yani translasyon süreci izler.
Transkripsiyon sürecinde okunan DNA parçaları yine bu süreçte oluşturulan mesajcı RNA (mRNA) adı verilen RNA molekülleriyle üretimin gerçekleşeceği yere taşınır. Okunan parça üzerindeki üçerli nükleotit dizilerine kodon denir. Her bir kodon özel bir amino asidin taşıyıcı RNA (tRNA)’ya bağlanmasını sağlar. Bu kodonlar sayesinde bağlanan amino asitler tRNA’lar sayesinde ise proteini oluşturacak komplekse taşınır ve burada tepkimeye sokulan amino asitler, üretilmesi beklenen proteinleri oluşturur.
Tüm bu süreç, yine genlerimizdeki bilgiler ve kimyasalların yapısal uyumu veya uyumsuzluğu ile sürdürülmektedir. Yani süreç bir defa başladıktan sonra, adeta domino taşları gibi zincirleme tepkimeler birbirini takip eder. Tıpkı dominoda olabileceği gibi, gen ifadesinde de hatalar olabilir ve bunun sonucunda hatalı proteinler oluşur. Kimi zamansa bu hatalar ifadeden değil, ifadeyi kontrol eden genlerde meydana gelen mutasyonlardan kaynaklanır. Bu tür hatalar çoğu zaman etkisizdir veya çok ufak etkilere sahiptir (bu ufak etkiler yararlı veya zararlı olabilir). Geri kalan nadir zamanlardaysa bu hatalar büyük sorunlara neden olabilir ve hastalıklar oluşur. Ancak bu, ayrı bir yazımızın konusu olabilir. Şu anda sadece genlerin ve genlerden üretilen proteinlerin vücudumuzun şekillerini nasıl oluşturduğuna odaklanacağız.
Bu noktada da farkına varacağımız ilk şey, üretimin olduğu yerde bir kontrol mekanizmasının da olması gerektiğidir. Buna genel olarak “gen ifadesinin kontrolü” adı verilir (evet, çok yaratıcı!). Bu süreç sayesinde üretilecek proteinin ne olduğu ve bu proteinin ne kadar üretileceği kontrol edilir. Aynı zamanda hatalı proteinler ayıklanır, geri dönüştürülür veya gerekiyorsa hücreden atılır.
Gen İfadelerinin Kontrolü
Gen ifadelerinin kontrolü süreci üç şekilde gerçekleşir: Transkripsiyon Seviyesi Kontrolü, İşlemleme Seviyesi Kontrolü (Processing-Level Control) ve Translasyon Seviyesi Kontrolü. Transkripsiyon seviyesi kontrolünde en büyük görev transkripsiyon faktörlerindedir. Bahsettiğimiz gibi, transkripsiyon faktörleri genel olarak transkripsiyon sürecini başlatan proteinler olarak bilinirler. Bu proteinler RNA polimerazın da bağlandığı gen bölgesi olan “promotor” bölgeye bağlanırlar. Bu bölgede oluşan protein kompleksine son olarak da RNA polimeraz eklenir ve transkripsiyon başlamış olur. Trankripsiyon faktörleri sadece transkripsiyonu başlatmakla kalmaz, transkripsiyon oranını arttırabilir ya da transkripsiyonun başlamasını engelleyebilir de. Oranı arttıranlara “artırıcılar (enhancers)” engelleyenlere de “susturucular (silencers)” denir. İşte bu tip transkripsiyon faktörleri sayesinde gen ifadeleri kontrol edilebilir, hangi proteinin sentezleneceği ve ne kadar sentezleneceği belirlenebilir.
Bir diğer kontrol etme süreci ise İşleme Seviyesi Kontrolü’dür. Bu sürecin detaylarından bahsetmeden önce bazı terimlerden bahsetmemiz gerekiyor. Bir genden işlemlenen ve bu işlemlenme sonucu oluşan RNA’da bulunan bir grup nükleotit dizisine “ekson” denir. Protein üretimi için kullanılacak asıl kodlar bunlardır. “Uçbirleştirme” sürecinden önce bu ekson gruplarını birbirinden “intron” denen nükleotit grupları ayırır. Fakat uç birleştirme sürecinden sonra intronlar ortadan kaldırılarak anlamlı kısımlar yani eksonlar bir araya getirilir. Bu uç birleştirme süreci de yine eksonlara ve intronlara bağlanan “uçbirleştirme faktörleri (splicing factors)” tarafından kontrol edilir. Bu faktörler kontrol edici proteinlerle bağ kurarak protein kompleksleri oluştururlar ve ardından uçbirleştirme süreci başlar. Uçbirleştirme sürecinde görev alan proteinlerin nereye bağlandığını ve bu sürecin nasıl işlediğini aşağıdaki şemadan öğrenebilirsiniz.
Bahsedeceğimiz son kontrol mekanizması ise Translasyon Seviyesi Kontrolü. Bu süreç temel olarak amino asit üretimini sağlayan mRNA’in bir çok yönden kontrol edilmesi ile gerçekleştirilir. Biz yazımız için daha önemli olduğundan sadece mRNA’nın yerleşmesinin kontrol edilmesinden bahsedeceğiz. mRNA’nın nereye yerleşeceğini RNA bağlayıcı proteinler, bağlanacak lokalizasyon dizimini (zip kodu olarak da bilinir) tanımlayarak belirlerler. Sonraki süreçte ise hücre iskelet sistemi elemanlarından olan mikrotübüller ve diğer motor proteinler mRNA’nın yerleşeceği bölgeye transferi için önemli rol oynarlar. Bu süreç embriyo gelişimi sırasında embriyonun ön-arka ekseni gelişimi için çok önemlidir. Bu eksenin gelişi sonucunda, baş ve kuyruk boyunca uzuvların nerelerde bulunacağı belirlenir.
Özetle bu mekanizmalar sayesinde dokularımız aynı genetik koda sahip olsa da farklı görevler üstlenebilir. Vücudumuzun şekli ve organlarımızın yerleşimi de yine bu mekanizmalar yardımıyla şekillenir ve bu mekanizmalar sayesinde hayatımızı düzgün bir şekilde sürdürebiliriz. Şimdi bir örnekle anlatımımızı biraz daha pekiştirip ana konumuza geçelim.
HOX Geni
HOX proteinleri HOX genleri tarafından sentezlenen transkripsiyon faktörleridir. Bu proteinler DNA üzerindeki özel nüleotit dizilerine bağlanarak bazı genleri aktifleştirirken bazı genleri baskılar. Bizim için önemi ise embriyonik gelişim sürecinde ön-arka eksen gelişimini düzenlemesidir. Aşağıdaki fotoğrafta Drosophila melanogaster türü bir sineğin vücudunun hangi bölümlerinde hangi HOX genlerinin aktif olduğunu görebilirsiniz.
Bu farklı genlerin hepsi farklı görevleri olan proteinlerin sentezlenmesine yardımcı olurlar ve böylece ön-arka eksen boyunca farklı yapıların oluşmasına yardımcı olurlar.
Bu sinek türünde 8 adet HOX geni mevcuttur. Homo sapiens’te ise bu genlerin sayısı daha fazladır. Aşağıdaki tablodan bizlerde bulunan HOX genlerini görebilirsiniz.
Dikkat ettiyseniz sinek türünde de bir primat türünde de HOX genleri bulunmaktadır ve ana işlevleri aynıdır. Bu genlerde oluşabilecek bir mutasyon, yapısal bozukluklara yol açabilir. Örneğin gelişimi sırasında bir kelebekte HOX genlerinde mutasyon olması durumunda ekstra kanat oluşabilir, benzer bir durum da insanlarda parmak sayısının artması şeklinde görülebilir. Bazı omurgalılarda ise, HOX genlerinin mutasyonu sonucu omurgalarında problemler oluşabilir. Yani tüm hayvanlar aleminde bu genler mevcuttur ve aktiftir. Bu da HOX genlerinin evrimsel kökeninin çok eskiye dayandığının kanıtıdır.
Sonik Kirpi Geni
Gelişim sürecinde etkili olan bir diğer önemli gen ve bizim de asıl ilgilendiğimiz gen olan Sonik Kirpi genidir. Bu gende kodlanmış olan ve daha sonra sentezlenecek olan Sonik Kirpi proteinleri, embriyonik gelişim boyunca uzuvların, beynin ortahattının, spinal kordun ve dişlerin gelişimini düzenler. Düzenleme mekanizmasının detayına girmeden önce genin keşfinden ve isimlendirilmesinden biraz bahsedelim.
1950 ve 60 yıllarda bir grup biyolog iskelet modelinin nasıl oluştuğunu anlamak için tavuklar üzerinde deneyler yaptılar. Bu deneylerdeki amaç embriyoların dokularının gelişim üzerine etkisiydi. Gelişim evresindeki üyelerin dokularıyla ilgilenen Edgar Zwilling ve John Saunders isimli bilim insanları üyelerdeki kemik düzeninin gelişimini 2 tane dokunun kontrol ettiğini buldular. Devam eden çalışmalarda farklı bakış açıları kazanılmış oldu. En ilgi çeken ve araştırmacılar sonuca en fazla yakınlaştıran deney ise bir tavuk embriyosu üzerinde yapıldı. Bu deneyde, gelişimin ilk evrelerindeyken, üye tomurcuğunun serçe parmağın oluşacağı tarafından alınan bir doku parçası diğer tarafa, birinci parmağın oluşacağı yerin hemen altına aşılandı. Civciv gelişmeye ve kanat oluşturmaya bırakıldı. Kanat gelişimi normaldi; ancak, parmak takımının tam bir kopyası oluşmuştu. Daha tuhaf olansa, parmakların yerleşim düzeniydi: yeni parmaklar, normal parmak takımının ayna görüntüsü şeklinde dizilmişti. Belli ki doku parçasının içindeki bir şey, belki bir molekül veya gen, parmakların yerleşim düzeninin gelişimini yönlendirebiliyordu.
Bu sonuç, art arda bir dizi başka deneyle defalarca tekrarlandı ve söz konusu etkinin pek çok değişik yolla ortaya çıkabileceği anlaşıldı. Devam eden araştırmalar sonucunda bu aşılanan doku parçasına, kutuplaştırıcı etkinlik alanı (Zone of Polarizing Aktivity – ZPA) adı verildi. Parmak oluşumu için ZPA’da bulunan ve henüz ne olduğu keşfedilemeyen molekülün konsantrasyonunun önemli olduğu düşünülüyordu. Bu doğrultuda yapılan bir deneyde, ZPA parçası ile üyenin geri kalan kısmı arasına çok minik bir folyo parçası yerleştirildi. Amaç, bu folyoyla ZPA’dan diğer tarafa herhangi bir molekülü geçirmeyecek bir bariyer oluşturmaktı. Araştırmacılar, bu bariyerin her iki yanındaki hücrelere ne olduğunu inceledi. ZPA tarafındaki hücreler parmak oluştururken, diğer taraftakiler çoğunlukla oluşturmuyor, oluşturduklarında ise ciddi kusurlar ortaya çıkıyordu. Bu deneyden sonra konsantrasyonun önemli olduğu da kesinleşmiş oldu.
İlerleyen yıllarda, genetik biliminin de gelişmesiyle, Drosophila melanogaster üzerinde yapılan deneylerde bir tür genin kanat oluşumuna yardımcı olduğu bulundu ve bu gene “Kirpi” geni dendi. Araştırmacılar hemen diğer hayvanlarda da bu geni aramaya koyuldu ve ZPA’da aktif olan bu genin diğer hayvanlarda da olduğunu buldular.
İsimlendirme de basitti; araştırmanın yapıldığı sineklerde bir kirpininkine benzer dikenler vardı. Bu yüzden de “kirpi geni” ismi verildi. Bu genin tavukta bulunan versiyonuna ise bir video oyunundan da esinlenerek “sonik kirpi geni” dendi.
Kirpi proteini ailesi memelilerde üç bireye sahiptir. Hint Kirpi Proteini bunlardan biridir ve endokondral kemikleşme sürecinde görev alır. Diğeri Çöl Kirpi Proteinidir ve bu protein ise morfonogenez sürecinin kontrolüne yarayan sinyalleri kodlar. Son üyeleri ise biraz önce de görevlerinden bahsettiğimiz Sonik Kirpi Proteini.
Sonik kirpi proteinleri aslında embriyolojik gelişim sırasında birçok sinyal merkezinden salgılanan sinyallerdir. Örneğin, nöral tüpün karın bölgesindeki kutuplaşmayı başlatması için notokord (embriyonun iskeletine verilen isim) tarafından gönderilen bir sinyal olarak da karşımıza çıkabilir.
Bu protein üzerinde yapılan çalışmalarda, parmak gelişimi ve kutuplaşmasında nasıl görev aldığı net olarak anlaşılmıştır. Sonik kirpi genin transkripsiyonu kolu/bacağı oluşturacak tomurcukların merkezden uzak ucunun ektodermal yapısından salgılanan ikinci set sinyallerin varlığında gerçekleşir. Bu sinyaller transkripsiyonu tetikler. Fakat henüz bu sinyallerin sonik kirpi genini nasıl hedef aldığı net bir şekilde anlaşılamamıştır. Genin moleküler işlemeleri endoplazmik retikulumda gerçekleşir (tranlasyon ve kontrol işlemleri her protein için aynı şekilde işlediğinden o kısmı tekrar anlatmıyoruz). Bu işlemenin ardından sonik kirpi proteinine kolesterol bağlanır, kolesterolün bu süreçte en önemli rolü Sonik kirpi genini hücre zarı içerisindeki aktivite alanını ve hücre dışına salınımını sırasındaki difüzyonunu kısıtlamasıdır. Kolesterolün farklılaşması sonucunda Smith–Lemli–Opitz sendromu gibi bazı doğuştan gelen sorunlar oluşabilir. Kolesterolün bağlandığı protein amacına uygun olan yere gitmek üzere hücre dışına çıkar. Gerekli merkeze ulaşır ve burada üzerine düşen görevi yapmaya başlar.
Bu genin kol/bacak tomurcuklarının uçlarındaki mezenşimin hücrelerinde ifadelendirilmesi, uzvun ön-arka eksen gelişimi için son derece önemlidir. Farelerde bu genin eksikliğinde uzvun yapısal olarak düzgün gelişmediği görülmüştür.
Ayrıca polarizasyonu sağlaması sayesinde de elimizin bir ucundaki parmak diğerinden farklıdır.
Bu mekanizmanın düzenli çalışması uzuvların düzgün bir şekilde oluşması demek oluyor ve başta dediğimiz gibi, doğada yaşamını devam ettirmek için kovalamaca oynamak zorunda olan canlılar için ise bu mekanizmanın önemi daha fazla. İşte yaşamayı kolaylaştıran, avı yakalamayı, avcıdan kaçmayı sağlayan uzuvların oluşumu genel olarak bu ve bu tarz süreçler sonucu ortaya çıkıyor. Bizlerin atalarının evrimsel süreçte tırmanmak için ve kavramak için avantaj sağlayan parmaklarının gelişmesini de sonik kirpi genlerine borçluyuz. Muhtemelen bu genlerden mahrum kalanlar nesillerini devam ettiremediler ve doğa tarafından elendiler. Bizler ise, başarılı genlerin eseri olarak bugünlere geldik.
Uzuv ve parmak oluşumunu etkileyen tek transkripsiyon faktörü yalnızca sonik kirpi proteini değil tabii ki, fakat şu ana kadar mekanizması en iyi anlaşılmış olan ve üzerinden en çok çalışılan protein bu proteindir. Bir kuşun kanadı, bir balinanın yüzgeci veya bir insanın elini genetik olarak karşılaştırdığımızda sonik kirpi genine ulaşabilmekteyiz. Bu genin de evrimsel geçmişi HOX genleri kadar eskiye dayanıyor ve evrimin gerçekliğini bir kez daha gözler önüne seriyor.
Kaynaklar ve İleri Okuma:
  1. Molecular Biology of the Cell
  2. Developmental Biology
  3. Ulster Medical Journal
  4. Molecular Pathology
  5. Molecular Genetics and Metabolism
  6. Harvard University
  7. UCLA
  8. MadSci
  9. MetaLife
  10. AustinCC
  11. Neil Shubin, İçimizdeki Balık, Sf. 57 – 75
  12. Gerald C. Karp, Cell Biology, 6.edt, Sf. 164 – 171, 241- 265
  13. Sadava, Life, 10. edt, Sf. 286 – 301

Minimal Bakteriyel Genom Dizayn Edildi ve Sentezlendi

Biyoloji biliminin en temel amaçlarından birisi her bir genin moleküler ve biyolojik fonksiyonunu anlamaktır. Bunu öğrenmek için en geçerli yaklaşımlardan birisi, araştırılmak istenen genin de içinde (gene ait nükleotit dizisini, protein sentezlemek için gerekli olan aktif gen bölgeleri ile birlikte) bulunduğu minimal genomlar (DNA) dizayn etmek ve sentezlemektedir. 2010 yılında parazit bir mikroorganizma olan Mycoplasma mycoides türünün genomunu baz alan 1079-kb (1.079.000 bazlık nükleotit dizisi) mini genom kimyasal olarak sentezlenmiş, sitoplazma içerisine enjekte edildiğinde ise hücre büyümesini uyararak harekete geçirmişti.

Burada araştırmada üretilen JCVI-syn3.0 adı verilen genomu barındıran hücreler görülüyor. Bu genom ile yaşamsal aktivitelerini devam ettirebilen küresel yapıdaki bakteriyel hücrelerden oluşan koloni gösterilmiş. Görseldeki ölçek 200 nanometre (metrenin milyarda biri) uzunluğu temsil etmektedir.
Burada araştırmada üretilen JCVI-syn3.0 adı verilen genomu barındıran hücreler görülüyor. Bu genom ile yaşamsal aktivitelerini devam ettirebilen küresel yapıdaki bakteriyel hücrelerden oluşan koloninin altında gösterilen ölçek 200 nanometre (metrenin milyarda biri) uzunluğu temsil etmektedir.

Yeni bir araştırmada ise Clyde A. Hutchison III ve çalışma arkadaşları bu genomun uzunluğunu 473 geni içeren 531 kilobazlık (531.000 nükleotitten oluşan dizi) daha küçük bir genoma dönüştürmek üzere dizayn geliştirerek, bu genomu sentezledi ve döngüyü teste tabi tuttu. Transkripsiyon ve translasyon gibi protein sentezi süreçlerinde kilit rolleri olan genleri bulunduran bu genom, bu genlerin yanı sıra 149 adet fonksiyonu bilinmeyen gene ait dizileri de barındırıyor.

 

1984 yılında kendiliğinden bölünme yeteneği kazandırılmış mikoplazmalar rapor edilmişti ve yaşamsal aktivitelerin temelini anlamak için bu canlılar model olarak alınıyordu. O günden beri bu alanda yapılan tüm araştırmalar, yaşam için zorunlu olan genleri saptamak için bilimcileri, üretilen genomları daha az gen barındıracak şekilde dizayn etmeye itmekteydi. Yine de üretilen tüm genomlar, (yaşayan canlılar baz alınarak) bir biçimde yaşamsal aktiviteler için gerekli olan temel genlerden başka genler de içeriyordu ve genom büyüklüğünde küçülmeye gitmek hep mümkün görünüyordu.

Bütün halinde üretilen genomlar, kimyasal olarak laboratuvar ortamlarında sentezlenmiş oligonükleotitlerden (birkaç nükleotitlik DNA dizileri)  elde edilebiliyor ve alıcı hücrelere verilerek yaşamsal işlev görüp göremeyecekleri test edilebiliyor.

 Sonuçlar, 1079 kilobaz çiftlik sentetik genomun (JCVI-syn1.0) yaşamsal aktiviteleri devam ettirebilmekle beraber küçültülebildiğini gösteriyor. Dizayn döngüsü olarak düşünebileceğimiz döngünün üç kez fazladan gerçekleştirilmesi ile safi yaşamsal genler geriye kalacak biçimde 531 kilobaz çifti uzunluğundaki daha kısa DNA (JCVI-syn3.0 – 531 kbp, 473 gen) sentezlenmiş oldu. Bu da doğada kendi kendine bölünerek üreyen canlılarda olan en kısa genomdan bile daha kısa olduğundan yaşamsal olarak bir anlamda bugüne kadarki en verimli genom üretildi diyebiliriz.

Four design-build-test cycles produced JCVI-syn3.0. (A) The cycle for genome design, building by means of synthesis and cloning in yeast, and testing for viability by means of genome transplantation. After each cycle, gene essentiality is reevaluated by global transposon mutagenesis. (B) Comparison of JCVI-syn1.0 (outer blue circle) with JCVI-syn3.0 (inner red circle), showing the division of each into eight segments. The red bars inside the outer circle indicate regions that are retained in JCVI-syn3.0.
Solda dizayn-yapım-test üçlemesinin döngüsü infografik haline getirilmiş. Mevcut araştırmada bu döngü üst üste dört kez tekrarlandı ve bugüne kadarki en kısa yapay yaşamsal genom üretilmiş oldu. Sağda ise daha önce üretilen daha uzun dairesel DNA JCVI-syn1.0 mavi renk ile gösterilmiş. Buna karşılık içerdeki kısa yapay genom JCVI-syn3.0’ün dışardaki genomun kırmızı ile gösterilmiş çıkıntılar halinde görünen parçalarından üretildiği anlatılıyor.

 


Kaynak :

  • Bilimfili,
  • Clyde A. Hutchison III. , et al., Design and synthesis of a minimal bacterial genome, Science , 25 Mar 2016:Vol. 351, Issue 6280, DOI: 10.1126/science.aad6253

Melanezyalı Bireylerde Neandertal ve Denisovan Genomu İzleri Bulundu

Avustralya’nın kuzeydoğusunda ve Yeni Zelanda’nın kuzeyinde kalan takım adaları ve de Fiji, Salomon Adaları, Vanuatu, Yeni Kaledonya, Papua Yeni Gine gibi ülkeleri kapsayan bölge Melanezya adı ile bilinmektedir. Bölgenin yerlileri olan Melanezyalı’ların bu takım adalara nasıl yerleştikleri, bu kısıtlı habitatlarda ve kapalı ekosistemlerde yaşamlarını nasıl devam ettirdikleri uzunca bir süredir bilimin de konusu olagelmiştir.

Dokuz ayrı araştırma enstitüsü ve üniversitenin dahil olduğu yeni bir araştırmada (Vernot et. al, 2016) 1523 insandan alınan DNA’lar analiz edildi ve verileri karşılaştırıldı. Geçtiğimiz yıl içinde yayımlanan bir araştırmada da tespit edildiği gibi, modern Avrasyalı bireylerin genomunda Neandertal DNA sekansları (dizileri) bulunduğu biliniyor.

Buna karşılık, bir karşılaştırma yapıldığında insan atalarının Neandertaller ile hibridize olduğu (çiftleşerek ürediği) ancak hem Neandertaller hem de Denisovan insanları ile hibrid olan insan atalarına dair verilerin eksik olduğu görülüyordu. Bunun üzerine bir yaklaşım geliştiren paleontologlar, arkaik hominin atalarından (bu araştırma için birbiri ile kuzen olan insan ataları kastediliyor) kalıtılmış olan DNA dizilerini tespit etmeye girişti.

Araştırmada kullanılan DNA’lar, içinde 35 Melanezyalı genomunda bulunduğu 1523 adet (coğrafi olarak birbirinden ayrı bölgelerde yaşayan) bireyden elde edildi ve bu DNA’lar tüm genom dizisine bakılarak incelendi.

melanezya-bireylerinde-denisovan-neandartel-izleri1-bilimfilicom
DNA’larının alındığı bireylerin yaşadıkları coğrafi konumlar ve Melanezya bölgesi adaları .

TÜm detayları, grafikleri ve haritaları ile Science dergisinde yayımlanan araştırmada yapılan teknik incelemelerin sonunda 1.34 Gb (milyar baz) Neandertal ve 303 Mb (milyon -mega- baz) Denisovan genomu dizisi elde edildi. Bu verilere ve arkaik sekanslara dayanarak, Afrika dışı farklı popülasyonlarda birçok kez gerçekleşmiş olması muhtemel olan Neandertal karışımı (hibridizasyonu) haritalandı.

Böylelikle genom üzerindeki arkaik sekansların önemli ölçüde silindiği ve/veya yok olduğu bölgeler de tespit edilerek, davranışsal çıkarımlar ve adaptif  geri melezleme işaretleri karakterize edildi.


Kaynak :

  • Bilimfili,
  • Benjamin VernotSerena Tucci, Janet KelsoJoshua G. Schraiber , Aaron B. Wolf, Rachel M. GittelmanMichael DannemannSteffi GroteRajiv C. McCoyHeather NortonLaura B. ScheinfeldtDavid A. Merriwether George KokiJonathan S. FriedlaenderJon WakefieldSvante PääboJoshua M. Akey,  Excavating Neandertal and Denisovan DNA from the genomes of Melanesian individualsScience  17 Mar 2016:  DOI: 10.1126/science.aad9416

Beynimizi Özel Yapan Nedir?

İnsan beyni eşsizdir. Bilişsel kapasitemizin şaşırtıcılığı; tekeri icat etmemize, piramitleri inşa etmemize ve ay yüzeyine inebilmemize olanak sundu. Bilim insanları; insan beyninin bu dikkate değer yanını kimi zaman “evrimin başat başarısı” olarak taçlandırır.

Fakat, tam olarak beynimizi eşsiz yapan nedir? Önde gelen bazı görüşler; beynimizin, boyutu göz önüne alındığında daha fazla nöron sahibi olduğu ve daha fazla enerji sarfettiğini, yüksek biliş seviyesinden sorumlu serebral korteksimizin orantısız bir biçimde büyük olduğunu (toplam beyin kütlemizin %80’inden fazlası) referan gösteriyor.

Ancak son yıllarda yapılan çalışmalar, eşsiz bir nöron sayma yöntemiyle ( beyni homojen bir karışımda çözerek) bu yerleşik düşünceleri çürüttüler. Beyin Çorbası ismi verilen bu teknik ile araştırmacılar; beyin büyüklüğümüze oranla nöron sayımızın diğer primatlarla tutarlı olduğu ve yüksek bilişten sorumlu serebral korteksimizin de beynimizdeki bütün nöronların yalnızca %20’sini barındırdığı, bunun da diğer memelilerle hemen hemen aynı oran olduğu bulgusuna eriştiler. Bu bulgular ışığında, bilim insanları insan beyninin esasında; pişmiş gıdalar sayesinde daha fazla kalori tüketmeye başlamamızla birlikte bir primat beyninin büyümesiyle doğrusal ölçekteolduğunu ileri sürüyorlar.

Bazı araştırmacılar ise; yalnızca insan beynine özgü olduğu düşünülen özelliklerin hayvanlar aleminin diğer üyelerinde de var olduğu bulgusuna ulaştılar. Örneğin; maymunlar da adalet duygusuna sahiptirler. Fareler defedakârlık ve empati gösteriyorlar. Geçtiğimiz aylarda Nature Communications ‘da yayımlanan bir çalışmada bilim insanları, makaklar ve insanların dilin temel yapılarını işlemeden sorumlu ortak beyin bölgeleri olduğu bulgusuna ulaşmıştı.

Her ne kadar beyinimizin özel olduğuna dair ileri sürülen gerekçelerin bazıları çürütülmüş olsa da, birçok yönden farklılık gösteriyoruz. Bu farklılıklar da genlerimizde ve çevreye uyum sağlama yetimizde yatıyor. Yapılan iki yeni çalışma tartışmaya yeni bakış açıları sağlıyor.

Eşsiz Genetik İşaretler

Genetik düzeyde, insanlar diğer hayvanlarla benzerdir. DNA’mızın %90’ından fazlası; şempanzeleri, bonobolaro ve gorilleri içeren yakın akrabalarımızla ortaktır. Öte yandan fareler ve insanlar; aynı olan birçok geni paylaşırlar(bu yüzden fareler birçok insan hastalığının tedavisi çalışmalarında model olarak kullanılır). Ancak son yıllarda yapılan çalışmalar, özel protein kodlayan bazı DNA kesitlerinin  insanlar ile diğer hayvanlar arasında biraz farklılık gösterebileceğini ortaya çıkardı.

Daha sağlam veriler toplayabilme tekniklerinin gelişmesi insan beyni ile diğer türler arasındaki nüansların çözülebilmesine olanak sunuyor. Örneğin, Allen Institute for Brain Science ‘dan bilim insanları  yetişkin fare ve insan beynini de içeren çeşitli türlerin binlerce gen ekspresyonunun detaylı bir atlasını geliştirdiler. Geçtiğimiz haftalarda Nature Neuroscience’da yayımlanan bir çalışmada araştırmacılar, insan populasyonunda da ortak olan gen ekspresyonu örgülerine bakma için bu veri setlerini kullandılar. Araştırmada altı bireyde 132 beyin bölgesinde ortak olan 20.000 genin 32 benzersiz işaretini tanımladılar (haritayı buradan inceleyebilirsiniz.) Bu özgün genetik kod bizim insan özellikleri göstermemize neyin sebep olduğuna dair bir açıklama sağlayabilir.

Araştırmacılar insanlar ile fareleri karşılaştırdıklarında, nöronlarla ilişkili genlerin türler arasında oldukça iyi korunmuş olmasına karşın, gliyal hücrelerle –geniş bir görev çeşitliliğine sahip nöronal olmayan hücreler–ilişkili genlerin böyle olmadığını gördüler. Öte yandan, gliya ile ilişkili gen örgüsünün Alzheimer gibi beyin hastalıklarını kapsayan genlerle örtüştüğü bulgusuna erişildi. Bu bulgular da uzunca bir süredir beynin destek hücreleri olduğu düşünülen gliyal hücrelerin aslında hastalıkta ve gelişimde önemli bir role sahip olduğunu ortaya çıkaran çalışmalara güncel desteler sunuyor.

Bu bulgu aynı zamanda beynin plastisitesine dair bir başka önemli çıkarıma da sahip olabilir; gliya beynin şekillenmesinde önemli bir role sahip. Ancak bu durumun yalnızca insanlara özgü mü, yoksa diğer primatlarda da görülüp görülmediği noktasında daha fazla analize ihtiyaçları var.

Maymundan İnsana

Plastisite eşsiz bilişsel yetilerimize sebep olan beynimizdeki özel farklılıkların altında yatan şey olabilir. Geçtiğimiz aylarda Proceedings of the National Academy of Sciences ‘da yayımlanan bir çalışmada; insan beyninin genetik olarak daha az kalıtsal olabileceği ve böylelikle de yakın akrabalarımız olan şempanzelerden daha fazla plastik özellikte olabileceği ileri sürülüyor.

Yapılan bu çalışmada, 218 insan ve 216 şempanze beyninde genlerin beyin büyüklüğü ve organizasyonuna etkileri karşılaştırıldı. Çalışma sonunda beyin büyüklüğünün her iki türde de büyük oranda kalıtsal olduğu, serebral korteks organizasyonunun ise  insanlarda şempanzelere kıyasla genetik olarak daha az kontrol edildiği bulgusuna ulaşıldı. Doğum anında beynimizin diğer primat kuzenlerimize kıyasla daha az gelişmiş olması ve bu durumun da bizler için çevremizin şekillendirdiği uzun bir süreci yaratması bu farklılığın muhtemel bir açıklaması olabilir.

Sonuç olarak; faklılığın temelinde yatan şeyin tam olarak ne olduğunu belirleyebilmek için daha fazla araştırmaya ihtiyacımız var. İnsanlar ile diğer memeliler ve apelerin ortak özelliklerine dair bilmediğimiz çok şey var.


Kaynak:

  1. Bilimfili,
  2. What Makes Our Brains Special? ScientificAmerican MIND. (2015, November 24)
  3. Suzana Herculano-Houzel The human brain in numbers: a linearly scaled-up primate brain Front. Hum. Neurosci., 09 November 2009 | http://dx.doi.org/10.3389/neuro.09.031.2009
  4. Sarah F. Brosnan & Frans B. M. de Waal Monkeys reject unequal pay Nature 425, 297-299 (18 September 2003) | doi:10.1038/nature01963; Received 14 May 2003; Accepted 23 July 2003
  5. Nobuya Sato , Ling Tan, Kazushi Tate, Maya Okada Rats demonstrate helping behavior toward a soaked conspecific Animal Cognition September 2015, Volume 18, Issue 5, pp 1039-1047 First online: 12 May 2015
  6. Benjamin Wilson, Yukiko Kikuchi, Li Sun, David Hunter, Frederic Dick, Kenny Smith, Alexander Thiele, Timothy D. Griffiths, William D. Marslen-Wilson & Christopher I. Petkov Auditory sequence processing reveals evolutionarily conserved regions of frontal cortex in macaques and humans Nature Communications 6, Article number: 8901 doi:10.1038/ncomms9901 Received 23 April 2015 Accepted 14 October 2015 Published 17 November 2015 Article tools
  7. Madissoon E, Töhönen V, Vesterlund L, Katayama S, Unneberg P, Inzunza J, Hovatta O, Kere J. Differences in gene expression between mouse and human for dynamically regulated genes in early embryo. PLoS One. 2014 Aug 4;9(8):e102949. doi: 10.1371/journal.pone.0102949. eCollection 2014.
  8.  Michael Hawrylycz, Jeremy A Miller, Vilas Menon, David Feng, Tim Dolbeare1, Angela L Guillozet-Bongaarts, Anil G Jegga, Bruce J Aronow, Chang-Kyu Lee, Amy Bernard, Matthew F Glasser, Donna L Dierker, Jörg Menche, Aaron Szafer, Forrest Collman, Pascal Grange7, Kenneth A Berman8, Stefan Mihalas, Zizhen Yao1, Lance Stewart, Albert-László Barabási, Jay Schulkin, John Phillips1, Lydia Ng, Chinh Dang, David R Haynor, Allan Jones, David C Van Essen, Christof Koch & Ed Lein Canonical genetic signatures of the adult human brain VOLUME 18 | NUMBER 12 | DECEMBER 2015 nature neurOSCIenCe Received 22 August; accepted 16 October; published online 16 November 2015; doi:10.1038/nn.4171
  9. S. Ben Achour, O. Pascual Glia: The many ways to modulate synaptic plasticity Neurochemistry International Volume 57, Issue 4, November 2010, Pages 440–445 Glia as Neurotransmitter Sources and Sensors doi:10.1016/j.neuint.2010.02.013
  10. Aida Gómez-Robles, William D. Hopkinsc,d, Steven J. Schapiroe, and Chet C. Sherwood Relaxed genetic control of cortical organization in human brains compared with chimpanzees Proceedings of the National Academy of Sciences vol. 112 no. 48 > Aida Gómez-Robles, 14799–14804, doi: 10.1073/pnas.1512646112

PET Plastiği Çözebilen Plastik Yiyici Bakteri Keşfedildi

Paketlemeden giyime kadar her şeyde kullanmak üzere her yıl 300 milyon tondan fazla plastik üretiyoruz. Bir ürünün uzun yıllar dayanmasını istiyorsanız, plastiğin esnekliği bunun için harika bir sebeptir. Fakat plastiklerin kullanım ömrü bittiği zaman, çevrede kolay kolay yok olmuyor bu sebeple gezegenimizin her köşesi, plastiğe olan bağımlılığımız yüzünden kötü etkilenmiştir. Fakat şimdi, bir geri dönüşüm merkezinin çamurunda bulunan atılmış şişeleri yavaşça yediği keşfedilen bakteri ile birlikte, bu pisliği temizlemede biraz yardım alabiliriz.

Plastikler, tekrarlı (monomer) yapı taşlarından meydana gelen uzun ince moleküller olan polimerlerdir. Polimerler, dayanıklı ve yumuşak bir ağ oluşturmak için birbirine çapraz şekilde bağlanmaktadırlar. Çoğu plastik karbon temelli monomerlerden yapılır, bu yüzden kuramsal olarak mikroorganizmalar için iyi bir besin kaynağıdırlar.

Fakat doğal polimerlerden (bitkilerdeki selüloz gibi) farklı olarak plastikler genelde biyolojik olarak çözünemezler. Bakteriler ve mantarlar, doğal maddeler ile birlikte evrimleşmişler ve her zaman ölü haldeki maddeden kaynak toplamak için yeni biyokimyasal yöntemler bulmuşlardır.

Fakat plastikler, yalnızca yaklaşık 70 yıldır kullanımda. Bu yüzden mikroorganizmaların, plastik liflere tutunacak gerekli biyo kimyasal araç setini evrimleştirecek, onları bileşenlerine ayrıştıracak ve sonra büyümeleri için gerekli olan enerji ve karbon kaynağı olarak elde ettikleri kimyasallardan faydalanacak fazla zamanları olmamıştı.

Enzim buluşu

Kyoto Üniversitesi araştırmacıları, atık yığınlarında araştırma yaparak plastik yiyen bir mikrop buldu. 250 örnek içinde beş yıl boyunca arama yaptıktan sonra, şişelerde ve giysilerde kullanılan genel bir plastik olan PET (polietilen tereftalat) üzerinde yaşayabilen bir bakteriyi ayırdılar. Yeni bakteri türünü Ideonella sakaiensis olarak adlandırdılar.

Plastik yiyen mikroplar hakkında zaten gezegenimizin kurtarıcıları olarak çığırtkanlık yapıldığı için, bunu eski bir hikayenin yeniden piyasaya sürülmesi olarak düşünebilirsiniz. Fakat burada birkaç önemli farklılık bulunuyor.

Öncelikle, önceki raporlar yetiştirmesi zor olan mantar hakkındaydı, fakat bu mikrop kolay bir şekilde büyüyor. Araştırmacılar, bakteri kültürü ve bazı diğer besinler ile birlikte PET’i sıcak bir kavanozda bırakıyor ve birkaç hafta sonra tüm plastik yok oluyor.

pet-plastigi-cozebilen-plastik-yiyici-bakteri-kesfedildi-1-bilimfilicom
Illustration: P. Huey

Araştırmacılar daha sonra, Ideonella sakaiensis‘in PET’i ayrıştırmak için kullandığı enzimleri tanımladı. Yaşayan bütün canlılar, gerekli kimyasal tepkimeleri hızlandırmak için enzim içermektedirler. Bazı enzimler besinlerimizi sindirmeye ve onları faydalı yapı taşlarına parçalamaya yardımcı oluyor. Gerekli enzimler olmadan vücut belirli besin kaynaklarına ulaşamaz.

Örneğin, laktoz hazımsızlığı bulunan insanlar, süt ürünlerinde bulunan laktoz şekerini ayrıştıran enzime sahip değillerdir. Ayrıca bazı mikroplar selülozu sindirebilirken, hiçbir insan bunu yapamaz. Ideonella sakaiensis, bakterinin PET bakımından zengin olan bir çevrede bulunduğu zaman ürettiği etkili bir enzim evrimleşmiş gibi görünüyor.

Kyoto Üniversitesi araştırmacıları, bakterinin DNA’sında PET sindiren enzimden sorumlu olan geni tanımladılar. Ardından bu enzimden daha fazla üretmeyi başardılar ve sonra sadece bu enzim ile PET’in ayrıştırılabileceğini gösterdiler.

İlk gerçek geri dönüşüm

Bu, plastik geri dönüşümü ve arıtımına tamamen yeni bir yaklaşımın kapısını açıyor. Şu anda çoğu plastik şişe tamamen geri dönüştürülmüyor. Bunun yerine eritiliyor ve başka sert plastik ürünlerine yeniden biçimlendiriliyorlar. Paketleme şirketleri genelde, çoğunlukla petrolden türetilen kimyasal başlangıç malzemelerinden oluşturulan yeni üretilmiş plastik tercih ediyor.

PET sindiren enzimler, tamamen geri dönüştürülen plastiğe doğru yeni bir yol sunuyor. Bunlar atık varillerine eklenebilir ve tüm şişelerle birlikte diğer plastik nesneleri işlemesi kolay olan kimyasallara ayrıştırabilirler. Daha sonra bunlar, gerçek bir geri dönüşüm yapısı üreterek taze plastik üretimi için kullanılabilirler.

Üretilen enzimler, her gün kullanılan eşyaların geniş bir bölümünde zaten büyük bir etkiye sahip. Biyolojik yıkama tozları, yağ lekelerini sindiren enzimler içeriyor. Peyniri sertleştirmek için kullanılan ve rennet (peynir mayası) adıyla bilinen enzimler, eskiden danaların bağırsaklarından geliyordu fakat şimdi genetiği değiştirilmiş bakteri kullanılarak üretiliyor. Belki de oluşturduğumuz kirliliği temizlemek için şimdi benzer bir üretim yöntemi kullanabiliriz.

Kaynak:

  • Bilimfili,
  • The Conversation
  • Shosuke Yoshida, Kazumi Hiraga, Toshihiko Takehana, Ikuo Taniguchi, Hironao Yamaji1, Yasuhito Maeda, Kiyotsuna Toyohara5, Kenji Miyamoto, Yoshiharu Kimura, Kohei Oda A bacterium that degrades and assimilates poly(ethylene terephthalate) Science 11 Mar 2016: Vol. 351, Issue 6278, pp. 1196-1199 DOI: 10.1126/science.aad6359

İnsan kök hücre DNA’sı ilk kez programlandı

DNA’mız genetik bilgimizin tamamını içinde saklıyor ve epigenetik değişimlerde aç-kapa mekanizmaları çalışıyor. Örneğin DNA nükleotitlerinin üzerine küçük metil moleküllerinin bağlanmasıyla genlerin protein sentezi mekanizmaları düzenleniyor; ki bu da normal gelişim ve sağlıklı yaşam için olmazsa olmazdır. Belli genlerin metilasyonu sağlık için potansiyel tehdit olmakla birlikte, çevresel etmenlerden de çok yakından etkilenmektedir. Ne var ki, metilasyon gibi tüm bu epigenetik bilgiler ve etkiler, kök hücrelerdeki bilginin gelecek nesile sağlıklı aktarımını sağlamak üzere silinmiştir.

Epigenetik bilgi ve işlem genlerimizi düzenlemede etkili, ancak herhangi bir anormal metilasyon aktivitesi bir sonraki jenerasyonda gelişim bozuklukluklarına sebep olurken, nesiller geçtikçe de zararlar birikmeye başlıyor. Bu sebeple her yeni yavruda kök hücreler embriyo düzeyinde sıfırlanarak epigenetik bilgiler temizleniyor.

Yumurta sperm tarafından döllendiğinde hücre kümesi olan blastosit’e dönüşecek şekilde bölünmeye başlar. Blastosit’in içerisinde bazı hücreler ana yapılarına dönerek kök hücrelere dönüşür. Kök hücreler de vücudun tüm hücrelerine dönüşebilecek, en temel hücreler olarak varlığını sürdürürler.

Bu kök hücrelerin içinden sperm ve yumurta (seks hücreleri)’ne dönüşecek olan, primordiyal kök hücreleri üzerinde epigenetik bilgi, embriyonun ilk iki haftalık sürecinden dokuz haftalık olana kadar ki zaman içerisinde yeniden programlandı. Mevcut çalışmada, epigenom programını düzenleyen ve koruyan enzimlerin engellenmesi ile DNA’nın metilasyon paternlerinin durdurulması işlemi gerçekleştirildi.

Araştırmadaki bulgulara göre, DNA’mızın yüzde 5’i yeniden programlamaya uygun değil. Sinir hücrelerinde bu ‘kaçak’ bölgelerin bazılarının aktif olduğu, ve gelişimde çok etkili roller aldığı biliniyor.Bunun tersine, veri analizleri şizofreni, metabolik rahatsızlıklar veya obezite gibi hastalıkların da bu DNA parçalarından temellenebileceğini ortaya koyuyor.

Araştırma ile elde edilen bulgular genom’umuzun içinde saklı olan potansiyel epigenetik etkisi olan bölgeler hakkında ciddi bilgiler sağlıyor. Farelerde aynı olan bu etken bölgeler de yakın gelecekte daha detaylı araştırmaların önünü açacak gibi görünüyor.

Bakteri ve bitki DNA’larından vücudumuza giren parçaları, DNA’mızın yaklaşık yarısını oluşturan ‘kara madde’ler gibi etkileri bilinmeyen retroelementlerin yeniden programlanmasını da sağlayabilir. Bu parçalar, evrimi yürütüyor ve çok faydalı olabiliyor. Öte yandan bazı retroelementler DNA’mızın üzerinde genlerin olduğu kısımlara eklemlenerek olağan gen ekspresyonu süreçlerini bozarak, zararlı etkiler üretebiliyor. Bu sebeple vücudumuz da epigenetik bir etkisi olan metilasyon mekanizmalarını geliştirmiştir.

Metilasyon potansiyel olarak zararlı olan retroelementleri kontrol etmekte çok etkili bir mekanizma. Metilasyon kök hücrelerde kalktığı zaman savunmamızın ilk hattını da kaybetmiş oluyoruz.

Aslında bu araştırma ile evrimsel tarihimizin yakın zamanlarında genom’umuzun içine giren retroelementlerin gözden kaçmış olanları tespit edildi ve metilasyon paternleri korundu. Buradan yapılan çıkarımlara göre,  retroelementler vücudumuzun savunma mekanizması içerisinde epigenetik etkiler ile evrimsel zararların önüne geçiyor.

 


Referans :

  1. Bilimfili,
  2. Walfred W.C. Tang, Sabine Dietmann, Naoko Irie, Harry G. Leitch, Vasileios I. Floros, Charles R. Bradshaw, Jamie A. Hackett, Patrick F. Chinnery, M. Azim Surani. A Unique Gene Regulatory Network Resets the Human Germline Epigenome for Development. Cell, 2015; 161 (6): 1453 DOI: 10.1016/j.cell.2015.04.053

İnsan embriyolarının genetiği bilimciler tarafından değiştirildi

Genom değiştirme ( genetik değiştirme ) araçlarından CRISPR-bağıl sistem veya Cas ( DNA üzerindeki kümelenmiş ve aralarında boşluklar bulunan kısa palindromik nükleotit dizileri) olarak bilinen gen sistemlerii insan hücreleri, hayvan zigotları gibi model sistemlerde gen değiştirmek için sıkça kullanılıyor ve belirli klinik araştırmalar için de son derece kolay ve umut verici bir yöntem olarak yer alıyor. Bu DNA dizileri isteğe göre genleri değiştirmek üzere ilgili bölgeler hedef alınarak yerleştiriliyor ve genlerin işleyişi kontrol altında tutuluyor.

Bugün bile, insan embriyosunun ilk dönemlerinde DNA tamir mekanizmalarının tam olarak nasıl çalıştığıyla ilgili büyük bir bilgi boşluğu var. Bu sebepten dolayı, CRISPR/Cas9 gibi genetik değiştirme sistemlerinin anneye verilecek olan embriyolarda kullanılmasının ne kadar verimli olacağı ve hedef olmayan bölgelere hatayla yerleşmesinin nasıl sonuçlar doğuracağı da net olarak bilinemiyor.

Protein&Cell dergisinde yayımlanan çalışmada, tripronüklear (3PN) zigotlarda CRISPR/Cas9 sistemi ile yapılan genetik değişimlerin uzun vadede etkileri gözlemlendi. Bulgulara göre, CRISPR/Cas9 yöntemi endojen β-globingenini (HBB) kolaylıkla keserek siliyor. – β-globin geni yokluğu veya mutasyonu durumunda akdeniz anemisine yol açabilmektedir. –

Ne var ki embriyo DNA’larında HBB genlerinin değiştirildikten sonra homolog olacak şekilde tamiri çok düşük olduğu için, genetiği değiştirilmiş embriyolar bir mozaik gibi değişik genetik yapılara sahip olmuş oldu. Bunun yanı sıra, tripronüklear zigotlarda hedef-dışı kesimlerin de gerçekleştiği DNA dizileme yöntemleri ile tespit edildi.

Bahsi geçen sonuçlar dışında dışsal olarak hücreye eklenen ve HBB gen bölgesinin düzeltilmesinde kullanılan tek zincirli (oligonükleo dizilimler) homolog endojen delta-globin (HBD) geninin de, bir takım mutasyonlara sebep olduğu tespit edildi.

Tüm veriler ve sonuçlar bir araya getirildiğinde çalışma geliştirilmesi gereken bir yöntemi bulguluyor veCRISPR/Cas9 olarak bilinen bu platformun verimini ihtiyaçlar doğrultusunda artırmanın gerekliliğini ispatlıyor. Neredeyse tüm CRSIPR/Cas9-uyumlu gen değiştirme klinik uygulamaların ön koşulu olarak bu zorunlu görünüyor.

 


Kaynak :

  1. Bilimfili,
  2. Puping Liang , Yanwen Xu , Xiya Zhang , Chenhui Ding , Rui Huang, Zhen Zhang, Jie Lv, Xiaowei Xie, Yuxi Chen and 7 more CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes Protein & Cell May 2015, Volume 6, Issue 5, pp 363-372

Ebeveynlerin Yaşadığı Çevrenin Çocuğun DNA’sını Nasıl Etkilediğine İlk Delil !

Kim olduğunuzu belirleyen yalnızca DNA’nız değildir, bulunduğunuz çevre de önemli bir role sahiptir. Yaşam biçimi, örneğin; stres ve beslenme biçimi gibi faktörler genlerinizin ifadesini değiştirebilir. Bu oldukça bilinir bir gerçek iken, bu değişimlerin gelecek nesillere nasıl aktarıldığı bilim insanlarının kafasını karıştırıyordu. Ve nihayet;Cell dergisinde yayımlanan yeni bir çalışma nelerin olduğuna dair bir kavrayış geliştirdi.

Embriyonun gelişiminde sperm ve yumurta hücrelerindeki bu değişimlerin silinmesine rağmen, bilim insanları DNA’nın bazı uzantılarının modifikasyonların sürmesine ve böylece de kalıtsal hale gelmelerine olanak tanıyarak bu yeniden programlamaya direndiğini ortaya çıkardı. Asıl önemlisi de, araştırmacılar; direnen genlerin bazılarının; içlerinde obezite ve şizofreni gibi hastalıkların da bulunduğu belirli hastalıklarla ilişkili oldukları bulgusuna ulaştılar.

DNA bir organizmayı oluşturmaya yetecek kadar kodlar içerirken, bütün genlerimiz aynı anda ya da aynı yerde aktif olmak durumunda değildir. Tam da bu noktada epigenetik devreye giriyor; DNA’daki bu modifikasyonlar; asıl DNA diziliminde bir değişiklik meydana getirmeden hangi genin aktif ya da inaktif olacağını değiştiriyor. Örneğin, metil grup olarak tanımlanan bir kimyasal grubu eklendiğinde veya çıktığında, DNA’ya onu okumak üzere görevli sistemlerin ulaşmasını engelleyerek genleri inaktive eder.

DNA metilasyonunun bu süreci yaşamımız boyunca devam eder, fakat bu durum çevremizdeki faktörlere bir tepki olarak da meydana gelebilir. Örneğin; açlık gibi stres oluşturan sıkıntılar metilasyon biçimini değiştirebilir, ve hamileliği sürecinde uzun süre açlık periyotları çeken annelerin kız çocuklarında şizofreni riskinde bir artış olduğu bulunmuştu. Fakat bununla da bitmiyor, laboratuvar koşullarında strese maruz bırakılan farelerin iki nesildeprese (keyifsiz) yavrular oluşturduğu görüldü.

Gözlemler kafaları karıştırdı, çünkü epigenetik verilerin sperm ve yumurta hücrelerini büyüten üreme hücrelerinde silindiği düşünülüyordu böylece de yavruya zarar verebilecek herhangi bir anormal metilasyonengellenecekti. Ortadaki bu gizemi çözmek adına, University of Cambridge‘den araştırmacılar; bu süreci, fare embriyolarının gelişiminde incelediler. Özellikle de embriyonun üreme hücrelerinde hayvanın yavru üretmesine sebebiyet veren şeylere odaklandılar.

Araştırmacılar; üreme hücrelerinin yeniden programlanma sürecinin yaklaşık yedi haftalık bir periyotta meydana geldiği bulgusuna ulaştılar. Bu aralık fazı, epigenetik değişimleri kolaylaştıran ya da sürdüren enzimlerin işlevselliğini engelleyen baskılayıcı bir ağın başlangıcını içeriyor. Ancak, araştırmacılar genomun (toplam gen) yaklaşık %5’inin yeniden programlamaya direndiği bulgusuna ulaştılar. Bu da şu anlama geliyor; bu bölgelerde meydana gelen herhangi bir metilasyon çıkarılamıyor ve böylece de gelecek nesilleri engelleme potansiyeliyle varlığını sürdürüyor.

Yakından bir inceleme üzerine, araştırmacılar bu direngen bölgelerin bazılarının, diyabet, obezite ve şizofreniyiiçeren belirli hastalıklarla ilgili olduğunu ortaya çıkardılar. Bu yeniden programlamadan “kurtulma”, çevresel faktörlerin bireyin yalnızca kendi sağlığı üzerinde etkisi olmadığını aynı zamanda gelecek nesilleri üzerinde de etkili olduğunu izah edebilmede yardımcı olabilir.


Araştırma Doi Numarası:  Ferdinand von Meyenn, Wolf Reik Forget the Parents: Epigenetic Reprogramming in Human Germ Cells Cell Volume 161, Issue 6, p1248–1251, 4 June 2015 DOI: http://dx.doi.org/10.1016/j.cell.2015.05.039
Kaynak:

  1. Bilimfili,
  2. Helen Thomson, “First evidence of how parents’ lives could change children’s DNA”, http://www.newscientist.com/article/dn27658-first-evidence-of-how-parents-lives-could-change-childrens-dna.html#.VYm-gvntmkr

Kanser Biyoİşaretlerini Tespit Edebilen Teknoloji

Nano Letters dergisinde yayımlanan yeni bir araştırmada, Wake Forest Baptist Medical Center’dan araştırmacılar; nükleik asitleri hastalık işaretleri olarak tespit edebilecek yeni bir teknoloji geliştirmeyi başardı. Araştırmacılar bu gelişmeyi çok güçlü bir potansiyel taşıyan başlangıç olarak niteliyorlar, çünkü bu metot ile kanserden ebola virüsüne kadar birçok hastalığı hastaya, hastanın sağlıklı dokularına veya derisine zarar vermeden teşhis etmek ve tanı koymak mümkün olacak.

Araştırmanın baş yazarı ve aynı tıp merkezinde biyomedikal mühendisliği Yardımcı Doçenti Adam R. Hall’un açıklaması şöyle: ” Teknolojinin henüz çok erken safhalarında olsak da, parmak ucundan alınan birkaç damla kan örneği ile testler gerçekleştirebildik.Bilim insanları yıllardır mikroRNA biyoişaretleri üzerine çalışmalar gerçekleştirdi, ancak bir problem var ki o da mikroRNA’ların çok kısa olması ve bu yüzden tutarlı biçimde tespit edilmelerindeki zorluk.. Birçok teknoloji bu RNA parçalarını tanılamakta güçlük çekiyor. “

DNA’mızda dahil olmak üzere nükleik asitler, birkaç taneden milyonlarcasına kadar değişen sayıda baz sekans veya zincirlerinden ( nükleotit dizileri) oluşur. Bu nükleotit bazların normal halde tam olarak hangi sırayla bulunuyor olduğu ise fonksiyonları ile birebir ilişkilidir denilebilir. Böylelikle yalnızca bu dizilere bakarak, bir hücrenin ve hatta bir dokunun içinde olup bitenleri kestirmek mümkün hale geliyor.

Bu nükleik asitlerin bir ailesi de mikroRNA’lardır ve ortalama (yalnızca) 20 bazdan oluşan tek zincirli yapılardır. Ne var ki, bu küçük diziler içinde kanserin de bulunduğu birçok hastalık hakkında sinyal verebiliyorlar.

Yeni geliştirilen teknikte ise, bir nükleik asit karışımının içinde hedeflenen (veya başka bir deyişle biyoişaretçi olan) nükleik asitin var olup olmadığı nanoteknoloji  yardımıyla anlaşılabiliyor ve hatta basit elektronik belirteçlerle miktarları da belirlenebiliyor.

Eğer arıyor olduğunuz nükleik asit (mikroRNA) oradaysa, sizin ortama eklediğiniz onunla birebir eşleşecek olan (fermuar kapanması örneği verilebilir) RNA zinciri ile çift zincirli bir yapı oluşturarak net bir sinyal veriyor. Sinyallerin sayısı da dedektörler yardımıyla sayılıyor ve hedef mikroRNA zincirden hücrede veya dokuda ne kadar bulunduğu da tespit edilebiliyor.

Çalışmada, bir nükleik asit kalabalığının içinden bile küçük bir hedef zincirin birebir ve kesin olarak tespit edilebileceği gösterilmiş oldu. Bununla birlikte yapılan testte özel olarak denenen veya kullanılan mikiroRNA ise mi-R155 kodlu bir zincirdi ve bu zincir insanlarda akciğer kanserinin indikatörlerinden biri olarak biliniyor.

Bu güzel haberlerin ardından araştırmacılar, klinik kan, doku ve idrar örnekleri üzerinde de çalışabilecek şekilde tekniği ve teknolojiyi geliştirmeye girişti. Konu ile ilgili yeni yayınların kısa sürede gerçekleşmesi bekleniyor.


Kaynak :

  1. Bilimfili,
  2. Osama K. Zahid, Fanny Wang, Jan A. Ruzicka, Ethan W. Taylor, Adam R. Hall. Sequence-Specific Recognition of MicroRNAs and Other Short Nucleic Acids with Solid-State Nanopores. Nano Letters, 2016; DOI: 10.1021/acs.nanolett.6b00001