İnsan Zekası Yardıma Muhtaç Bebeklere Bakabilmek İçin Evrilmiş Olabilir

Yeni araştırmalara göre insan zekası yeni doğmuş bebeklere bakabilmek için evrilmiş olabilir. Beyin ve bilişsel bilim uzmanlarının geliştirdiği evrimsel bir model, yüksek zeka gelişiminin, çocuk yetiştirmenin talepleriyle şekillenmiş olabileceğini gösteriyor.

Kaynak: https://i.pinimg.com/originals/85/1e/04/851e04f4944f214434aab07245fbff72.jpg

Beyin ve bilişsel bilim alanında yardımcı doçent olan Steven Piantadosi ve Celeste Kidd’in geliştirdiği yeni evrimsel model ile ilgili çalışmalar, the Proceedings of the National Academy of Sciences adlı sitede çevrimiçi olarak yayınlandı.

Kidd şöyle diyor: “Diğer türlerle kıyaslandığında insan yavruları, doğduklarında çok daha gelişmemiş durumdadır. Örneğin: yavru zürafalar doğduktan birkaç saat sonra ayakta durabilir, yürüyebilir ve hatta yırtıcı hayvanlardan kaçabilir. Oysa ki insan yavruları kendi başlarını bile kaldıramıyor.”

Piantadosi “Bizim teorimiz bir çeşit kendi kendini güçlendiren bir döngünün olduğu yönünde. Öyle ki daha büyük beyne sahip olmak, gelişmemiş (premature) yavrulara, premature doğan yavrular da büyük bir beyne sahip ebeveyinlere yol açıyor. Bizim modellememiz ise bu dinamiğin aşırı zeki ebeveynler ve çok premature bebekler için kontrolsüz baskıyla sonuçlanabileceğini gösteriyor.” dedi.

Başka bir deyişle, insanlar oldukça büyük beyne sahip olduğu için, bebekler gelişim sürecini tamamlamamışken, yani kafaları hala sorunsuz bir doğuma izin verecek kadar küçükken doğuyor. Bu erken doğumsa insan yavrularının diğer primatlardan daha uzun süre yardıma muhtaç ve savunmasız oldukları anlamına geliyor. Bu savunmasız bebekleri korumak içinse, daha zeki ebeveynlere ihtiyaç duyuluyor. Bunun sonucunda, büyük beyinler ve henüz gelişmemiş beyinlerin doğal seçilimde desteklenmesiyle ortaya çıkan baskı, kendi kendini güçlendiren bir döngü oluşturuyor.  Bu durum da, insanlar gibi diğer hayvanlardan niteliksel olarak farklı bilişsel yeteneklere sahip türlerin ortaya çıkmasına sebep oluyor.

Piantadosi ve Kidd, bebeklerin gelişmemiş olarak doğmasının, genel zekayla bağlantılı olduğu model öngörüsünü test ettiler. Piantadosi “ Yeni doğmuş bebeklerin olgunlaşmalarının göstergesi olan sütten kesilme zamanının, primatın zekasını tahmin etmek için, beynin boyutu (ki genellikle zeka ile ilişkilendirilir) da dahil olmak üzere diğer ölçütlerden çok daha yararlı bir ölçüt olduğunu bulduk.” dedi.

Teorinin aynı zamanda insanları özel kılan bilişsel yeteneklerin nasıl oluştuğunu açıklayabileceği düşünülüyor. Rochester Üniversitesi Bebek Laboratuarı olan Kidd “İnsan eşsiz bir zeka türüne sahip. Sosyal muhakemede ve Zihin Kuramı (Theory of Mind) diye bilinen bir şeyde çok iyiyiz. Yani, başkalarının ihtiyaçlarını önceden sezme ve onların ihtiyaçlarının bizimkiyle örtüşmediğini anlayabilme becerisine sahibiz. Bu birkaç yıl boyunca konuşamayan bebeklerle ilgilenirken özellikle yardımcı olan bir özellik” dedi.

Piantadosi şöyle diyor: “İnsanların neden çok zeki olduklarına dair alternatif teoriler var. Bunların çoğu sert çevre şartlarında yaşamaya veya gruplar halinde avlanmaya dayanıyor. Araştırmamızda bizi motive eden ise bu teoriler hakkında düşünüp, aynı koşullara maruz kalan diğer türler yerine neden primatların ve memelilerin daha zeki olması gerektiğinin öngörüldüğünü anlamaya çalışmak oldu.”

Kilit nokta canlı doğum oldu. Araştırmacılara göre, zekanın kontolsüz seçiliminin gerçekleşmesi için hem sadece bir adet yavrunun doğması hem de büyük beyinli olması gerekiyor. Bunlar da gelişmiş memelilerin kendine özgü olan ayrıt edici özellikleridir.

Kidd şöyle diyor: “ Teorimiz neden daha çok zamanı olan ve aynı çevresel zorluklara maruz kalmış dinazorların değil de, primatların ileri bir zeka geliştirdiğini açıklıyor. Dinazorlar yumurtalarda gelişiyordu, böylece zeka ile yeni doğan yavruların premature/gelişmemiş doğması arasında bir ilişki yoktu.”

Makale: Steven T. Piantadosi and Celeste Kidd (2016) Extraordinary intelligence and the care of infants PNAS vol. 113 no. 25 > Steven T. Piantadosi, 6874–6879, doi: 10.1073/pnas.1506752113

Orjinal Yazı: Arkeofili

En Temel Ölçekte Evrim: Amino Asit Sıra Değişimleri

En Temel Ölçekte Evrim: Amino Asit Sıra Değişimleri

Grip virüsü, gösterilerinde bir anda kılık değiştirme numarası yapan sihirbazlar gibidir. Genomu 20-30 yıl içinde, hayvan genomlarının milyonlarca yılda geçireceği değişimleri geçirebilir. Dolayısıyla bedenlerimizi enfeksiyona karşı uyaranlar da dahil olmak üzere, viral proteinler kendilerini sürekli yeniler. Bağışıklık sistemimizi tehdit ederken, aşı üreticilerinin de işini zorlaştırırlar.

Evrimin proteinler üzerindeki etkisini inceleyen biyolog Jesse Bloom, aralıksız değişimin bir fırsat olduğunu düşünüyor. Geçmiş grip mevsimlerinde toplanan verilerden, Bloom bugünkü grip virüslerinin atalarından bazılarının genetik yapısını bütünüyle biliyor. Seattle’da bulunan Fred Hutchinson Kanser Araştırma Merkezi’ndeki laboratuvarında bu bilgiyi kullanarak, virüslerin bağışıklık sistemini atlatacak dönüşümleri nasıl geçirdiklerini anlamaya çalışıyor.

Bloom ve ekibi, “evrimsel biyokimya” alanında çalışan ve giderek büyüyen bir grubun parçası. Yaşamın muazzam çeşitliliğini açıklamak ve bu çeşitliliğin tam olarak nasıl belirdiğini belirlemek istiyorlar. Bitkilerin ve hayvanların farklı ortamlara nasıl uyum sağladığına odaklanmak yerine, bu araştırmacılar çeşitliliği çok daha küçük ölçekte ele alıyor: Yaptıkları çalışma, ilkel yaşam biçimlerine olanak tanıyan az sayıdaki proteinin, nasıl olup da şu anki biyolojik süreçleri yöneten milyonlarca özelleşmiş proteine evrildiğini açıklamayı amaçlıyor.

Bloom genetik kayıtlardan yararlanarak, geçmiş zamanlarda varolmuş virüs proteinlerini düzenleyebiliyor ve ardından her seferinde bir amino asit olacak şekilde nasıl evrim geçirdiklerini yeniden gözlemliyor. Diğer araştırmacılar, biyolojik moleküllerin milyonlarca yıl içinde evrilen atalardan kalma biçimlerini diriltmek için modern türleri çözümlüyor.

Ellerinde geçmişe ait bir protein olan araştırmacılar, tek bir amino asiti değiştirmenin (muhtemelen evrim sürecinde böyle olmuştur) proteinin esneyişini, katlanışını ve diğer moleküllerle bağlanışını (ya da bağlanmayışını) nasıl değiştirdiğini sınayabiliyorlar. Adım adım amino asit değişiklikleri yaparak proteinin alternatif tarih versiyonlarını deneyen bilimciler, bir proteinin fiziksel biçiminin nasıl hem evrilmesini sağladığını, hem de evrimini sınırladığını öğrenebiliyor.

Bu çalışma uzun zamandır yanıtlanmayı bekleyen bazı soruları nihayet yanıtlayabilir: Evrim ne dereceye kadar şans eseri olaylara bağlı? Evrim farklı yollar izleyerek aynı noktaya varabilir mi? Biyolojik karmaşıklık nasıl evrilir? Bu tür deneyler, bir yandan da modern proteinler üzerinde çalışan ve amino asit sıralamasının biyolojik işlevlerle nasıl bağlantılı olduğunu inceleyen araştırmacılara da yardımcı oluyor.

Biçim Eşittir İşlev

Amino asitlerin bu sıralı dizisi, bir proteine karşılık gelen gen haritasını tutan gen tarafından okunur. Uygun asitler bir kez dizildikten sonra, origami kağıtlarına benzer şekilde, proteinin hücre içinde ne yapacağını belirleyen köşeli ve çıkıntılı minik yapılar biçimine katlanır. Bir proteinin katlanış şekli, onun belli DNA parçalarını yakalamasını veya bazı kimyasal tepkimeleri hızlandırmasını sağlar. Bir gendeki mutasyonlar, ortaya çıkan proteinin biçimini değiştirebilir ya da davranışında farkedilmesi güç değişiklikler yaratabilir. Böylece zaman içinde bir proteinin işlevi değişebilir. Fakat olasılıklar sonsuz değildir. Parçalanan, katlanmakta başarısız olan veya gereken performansı göstermeyen yeni proteinler, doğal seçilimin sınavlarından sağ çıkamaz.

“Katlanmanın, durağanlığın (stabilliğin), çözünürlüğün, işlevin ve özgünlüğün (spesifikliğin) fiziksel belirleyicileri, evrimsel sürecin özünde yer alan etkenlerdir,” diyor Şikago Üniversitesi’nden biyolog Joe Thornton. “Yakın zamana kadar bu durum pek kabul görmüyor ve açıkça belirtilmiyordu.” Şimdi ise moleküler evrimi anlamak için proteinlerin işlevleri olan, fiziksel nesneler olarak incelenmelerinin öneminin anlaşıldığını ekliyor Thornton.

Araştırmacılar proteinlerin geçmişlerini yeniden yapılandırırken, bazen genetik mutasyonların bir molekülü, daha önce başarılı olamayacak başka mutasyonlara bir şans verecek denli değiştirdiğini fark etti. Bu da yeni özelliklerin ve işlevlerin evrilmesi için fırsat yaratıyor. Bu biyologların onlarca yıldır aklından geçen bir düşünce olmasına karşın, laboratuvarda araştırılmaya yeni başlanıyor.

Daha yüksek boyutta görmek için görselin üzerine tıklayın.

Yüksek boyutta görmek için görselin üzerine tıklayın.

Örneğin Bloom ve meslektaşları, grip virüsünün evriminin mutasyonlar arası etkileşimden nasıl etkilendiğini araştırmak içinnükleoprotein denilen bir grip virüsü proteini kullandı. Çeşitli mutasyonların toplamda yarattığı etkiyi anlamak, araştırmacıların yeni genetik varyasyonların kısa vadeli etkilerini öngörmelerini sağlayabilir. Bu bilgi, önümüzdeki grip mevsimlerinde hangi viral dizilerin etrafta olabileceğinin tahmin edilmesine ve etkili aşıların geliştirilmesine yardımcı olabilir.

Nükleoprotein genlerini, 1968 ve 2007’de yalıtılan virüs dizileri ile karşılaştıran ekip, 1968 proteinin yeni biçimine dönüşmesini sağlayan olası adımları haritaladı. Nükleoprotein 1968’de oynadığı rolün aynısını (viral RNA’nın düzenlenmesine yardımcı olmayı) sürdürse de, bu kırk yıllık süreç içinde 498 amino asitinden 33 tanesi değişmiş. Amino asitlerinin küçük bir kısmı da birden fazla kez değişim geçirmiş. Ekip bu bulguları 2013 yılında eLife dergisinde yayımlanan makalelerinde açıklamıştı1.

Bloom ve çalışma arkadaşları, 1968 nükleoproteinini yapılandırdı ve ardından son kırk yılda gerçekleşmiş mutasyonların her birinin gerçekleşmesinin yarattığı etkileri sınadı. Mutasyonlardan bazıları, bir işgalci olduğunda kişinin bağışıklık hücrelerini uyaran protein kısımlarını etkiledi. Bu da muhtemelen grip virüsünün yakalanmaktan kaçabilmesine yardım ediyor. Fakat gerçekleşen değişimlerin bir bölümü de kendi başlarına, virüs için kötü sonuçlar doğurdu: Nükleoprotein, göevini yapmasına yetecek süre boyunca uygun şekilde katlanmış kalamadı.

Nükleoproteinin evrimi sırasında, mutasyonların bazıları proteinin durağanlığını yükseltti. Daha sonraki mutasyonlar gerçekleştiğinde, muhtemelen daha önce gerçekleşmiş bu tür değişimler sayesinde proteinin yapısı bozulmadan kalabildi ve işlevlerini sürdürmeye devam edebildi.

Bir mutasyonun yarattığı etki öteki mutasyonlara bağlı olduğunda, bu karşılıklı etkileşime “epistasis” (iki değişkenin birbirini etkilemesi durumu) denir. Oregon Üniversitesi’nden biyofizikçi Michael Harms, tekil moleküller arasındaki bu etkileşimlerin, evrimin izleyeceği yolu belirlemede büyük önem taşıdığını söylüyor. Kendisi, s100 olarak adlandırılan bir grup proteindeki işlev çeşitliliğinin nasıl evrildiğini inceliyor. Harms, epistasisin evrimin tümünde görülen yaygın bir özellik olduğunu ekliyor.

Birbirine bağlı etkileşimler sadece mutasyon çiftleri arasında olmakla kalmıyor. Bundan çok daha karmaşık olabiliyorlar. Diğer laboratuvarlardan gelen verileri inceleyen Harms, epistatik etkileşimlerin 6 farklı mutasyona birden bağlı bile olabildiğini buldu. Böylesi bir karşılıklı etkileşimin varlığı, genler kendilerini azıcık dönüştürdüğü takdirde, evrimin çoğu zaman rotayı çok farklı yönlere çevireceği anlamına geliyor.

İzin Veren Mutasyonlar

Araştırmacılar, ileride gerçekleşecek değişimler için zemin hazırlayan mutasyonlara “izin veren” mutasyonlar adını veriyor. Bazı protein işlevlerinin ortaya çıkışı, ancak bu tür izin veren mutasyonların, evrilen bir molekülü pek de olası olmayan biçimde değiştirmelerinden sonra gerçekleşebiliyor.

Thornton, omurgalılarda stres tepkilerini, büyümeyi ve cinsel gelişimi yöneten steroid hormonlarının, kendi reseptörleri ile nasıl ortaklık geliştirdiklerini incelemek için atadan kalma proteinlerin yeniden yapılandırılmasından yararlanıyor. Reseptörler, hücre içi yanıtı tetiklemek için belirli partnerlere bağlanan proteinlerdir. Farklı türlerdeki steroid reseptörlerini karşılaştıran Thornton, moleküller arasındaki evrimsel ilişkilerin haritasını ve ortak atalarının olası amino asit dizilimini çıkarabilmiş. Ardından laboratuvar ortamında yetiştirilen hücrelere, uzun zamandır soyu tükenmiş durumda olan proteini kodlayan bir DNA molekülü eklemiş. Böylece bu hücreler, ellerine geçen genetik yönergeleri kullanarak, maziden kalma bir küçük parça üretmiş.

Thornton’un çalışmalarının çoğu, ekibi ile birlikte 2006 yılında yeniden yapılandırmış oldukları 450 milyon yıllık bir reseptör protein ile başlıyor. Bu protein, farklı hormonlar tarafından etkinleştirilen modern reseptör molekülleri ortaya çıkarıyor. Reseptörlerden biri olan glukokortisoid reseptörü, stres hormonu olan kortizole yanıt veriyor. Bir başka reseptör olanmineralokortisoid reseptörü, aldosteron hormonuna cevaben tuzun ve diğer elektrolitlerin düzeyini kontrol ediyor. Thornton’un ekibi, bu reseptörlerin yeniden yapılandırılan atasının, hem kortizol ile hem de aldosteron ile etkinleştirilebildiğini keşfetti.

Thornton, sadece kortizole yanıt veren bir reseptörün, seçici olmayan reseptörden 40 milyon yıl sonra belirdiğini gösterdi. Genel ata reseptörü, kortizole özel bir reseptöre dönüştüren amino asit değişiklikleri dizisi, ekip tarafından ortaya kondu. Ancak deneylerden anlaşıldığı üzere, antik reseptörün tercihlerini değiştiren mutasyonlar kendi başlarına işlevsel bir reseptör üretemiyorlar. “İşlev değiştiren mutasyonlar kendi başlarına tolere edilemiyorlar,” diyor Thornton. Reseptörün çeşitli bölgelerinin durağanlığını bozuyorlar. Tıpkı grip virüsünün evrilen nükleoproteinide olduğu gibi, öncelikle ata reseptörün yapısının sıradaki mutasyona dayanabilecek duruma gelmesi gerekiyor.

Daha yüksek boyutta görmek için görselin üzerine tıklayın.

Yüksek boyutta görmek için görselin üzerine tıklayın.

Thornton ve çalışma arkadaşları 2009 yılında Nature dergisinde yayımladıkları bir makalede, iki amino asit değişiminin, antik reseptörü dönüşüm için usulca hazır duruma getirdiğini açıkladı2. Bunlar olmadan, işlev değişimi sağlayan mutasyona ulaşma olasılığı olamazdı. “Zamanı geri sarabilsek ve tarihin yeniden akmasını sağlayabilsek, bu izin verici mutasyonların yinelenme olasılığı pek az olurdu. Muhtemelen çok farklı bir glukokortisoid reseptörü ve çok farklı bir endokrin sistemi elde ederdik,” diyor Thornton.

Thornton ve o sıralarda Thornton’un Oregon Üniversitesi’ndeki laboratuvarında doktora sonrası araştırmacısı olan Harms, evrimin başka bir yol izleyerek aynı sonuca ulaşıp ulaşamayacağını araştırıyordu3. Harms, antik proteinin binlerce değişik çeşidini yaratıp inceleyerek, onun aynı işlev değişimine uğramasıyla sonuçlanacak alternatif mutasyon zincirlerini tarıyordu. Nature dergisinde 2014 yılında yayımladıkları makalede, başka alternatif bulamadıklarını açıkladılar. Görünüşe göre evrim, nadir rastlanan bir fırsattan yararlanabilmişti.

Reseptör proteinin değişik çeşitlerinin biyofiziksel analizi, kortizole özgü bağlanmanın evrilmesine neden bu kadar az mutasyonun olanak tanıdığının anlaşılmasını sağladı. Bazı bölgelerin fazladan desteğe gereksinimi olmakla birlikte, reseptörün de ayrıca iki biçim arasında geçiş yapabiliyor olması gerekiyordu: Kortizol yokken inaktif bir yapı ve hormon bağlandığında gen aktifleştirici bir yapı. Mutasyonların bazıları reseptörün aktif biçimini fazlasıyla durağanlaştırıyordu ve “daima açık” konfigürasyonuna sabitliyordu. Mutasyonların ayrıca, işlev değiştirici mutasyonlar işe karışmadan önce, kendi başlarına ata proteine uyumlu olması gerekiyordu. “Bir mutasyonun tüm bu koşulları sağlaması gerekir ve bu da pek kolay bir şey değil. Izin veren mutasyonların (bu işlevsel değişim için) neden bu denli nadir olduklarının açıklaması böyle olsa gerek,” diyor Thornton.

Fakat her yeni işlevin, karmaşık epistatik etkileşimlerin sonucu olduğu da söylenemez. Geçtğimiz Ocak ayında eLife dergisinde yayımladıkları makalede Thornton ve Oregon Üniversitesi’nden Ken Prehoda, tek bir amino asit değişimi sonucunda yepyeni bir işlev kazanan antik bir protein tanımladı4. Ekip, hücrelerin bölünmeden önce uzayda yönelimlerini ayarlamalarına yardım eden bir hayvan proteinin kökenini araştırdı. Gelişen bir bedende yeni hücrelerin doğru yerlerde konumlamları açısından bu çok önemlidir. Çok hücreli organizmaların ortaya çıkmasından önce tek hücreli yaşam formlarının bunu doğru yapıyor olmaları gerekiyordu.

Thornton, Prehoda ve ekip arkadaşları, proteinin GKPID (PID: protein etkileşim alanı. [İng. protein-interaction domain]) adı verilen ve bölünme sırasında iskele görevi görerek hücrelerin yönelimlerini düzenleyen bir parçasına odaklandı. GKPID‘nin milyar yıllık atası buna benzer hiçbir şey yapmıyordu. Modern guanilat kinaz enziminin atası olan bir enzim öncülüydü ve hücrelerin DNA’nın yapıtaşlarından bazılarını yaparken kullandığı bir kimyasal tepkimeyi katalizliyordu. Şaşırtıcı ama tek bir mutasyon, bu atalardan kalma proteini enzimden iskeleye dönüştürmeye yetmişti.

Evrimi şekillendiren fiziksel ilkeler hakkında genel kuramlar geliştirmek için neden daha fazla proteinin evrimsel tarihlerinin anlaşılması gerektiğini, bu örnekten anlayabiliriz. İnsanlar ne zaman bir proteini ayırsalar, yeni bir özellik görüyorlar. Neyse ki hızlanan bilgisayarlar, gelişen yazılımlar ve referans genomların artan sayısı sayesinde, atalardan kalma proteinlerin yeniden yapılandırılmasına ilişkin araştırmalar ilerliyor.

Farklı Adımlarla Aynı Noktaya Varılabilir

Şansa bağlı olaylar evrimin önüne serilecek olasılıkları değiştirebilirken, evrilen proteinlerin keşfe çıkabilecekleri bir özgürlük alanları da mevcut. Bazı işlevlere ulaşmak için seçebilecekleri birden fazla yol olabiliyor. Brandeis Üniversitesi’nden biyokimyacı Douglas Theobald, pek çok hücrenin oksijensiz enerji üretmek için kullandığı bir enzim üzerinde yaptığı araştırmada bunu görmüş. Laktat dehidrojenaz enzimi, yapısal olarak benzer enzimlerden sadece bir kez evrilmemiş; farklı organizma gruplarında en az dört kez evrilmiş5.

Benzer bir enzim olan malat dehidrojenaz enzimini, laktat dehidrojenaz enzimine dönüştüren evrimsel olayları yeniden yapılandırarak, Theobald ve ekibi şunu buldu: İki adet tek hücreli parazit grubu, aynı enzim tarafından farklı yollarla ortaya çıkmıştı. Bu bulgular eLife dergisinin 2014 sayısında ve Protein Science dergisinin geçen Şubat sayısında yayımlandı. Yapılan çalışma, farklı genetik alt yapıların evrimin rotasını farklı organizmalarda farklı yollara kırabildiğini, fakat yine de benzer sonuçlara ulaşılabildiğini gösteriyor. “Çok miktarda epistasis olsa bile, aynı işleve götürebilecek yine de bir çok yol olabilir,” diyor Theobald.

California Üniversitesi Berkeley Kampüsü’nden Susan Marqusee, bir proteinin yeni bir şeyler yapmaya başlaması için birden fazla yol olduğunu gören bir başka araştırmacı. Marqusee, Thornton’un ekibiyle ortak çalışma yaparak, iki farklı bakterinin (Escherichia coli ve sıcağı seven Thermus thermophilus) çok farklı sıcaklıklarda aynı işi yapacak enzimleri nasıl geliştirdiklerini incelemiş.

T. thermophilus çoğu proteinin parçalanmasına neden olacak yüksek sıcaklıktaki su kaynaklarına bayılıyor. Biyokimyacılar, doğanın bu bakteride uyguladığı stratejilerden yararlanarak ısıya dayanıklı proteinlerin mühendisliğini yapmaya karar verdi. Dolayısıyla bu özellikten sorumlu olan genel ilkeleri bulmaları gerekiyordu. E. coli ve T. thermophilus’taki H1 enzimlerinin ortak atasını yeniden yapılandırarak, Marqusee’nin ekibi bakteriyel proteinin ısıyla nasıl başa çıktığını anlamayı başardı.

Ekibin 2014 yılında PLOS Biology’de yayımladığı makaleye göre, 3 milyar yıl öncesinden kalma ortak ata, T. thermophilus’un bugün kullandığı enzimden daha az durağandı6. Isıya dayanaklı protein evrilirken, durağanlığı giderek artmıştı; tek bir yenilikten ötürü değil, farklı zamanlarda ayrı biyofiziksel stratejilerden dolayı. “Fiziksel kimya, sonuçta doğru fenotipe götürdüğü sürece pek sorun değildir,” diyor Marqusee. Evrim, durağanlığı desteklemek için farklı amino asitlerden farklı yollarla yararlanabildiği için enzimin artmakta olan ısıya dayanıklılığı, belli mutasyon dizilerinin şans eseri varolmasına bağlı değildi.

Evrimin İzleyeceği Yol Tahmin Edilebilir mi?

Proteinlerin geçmişte nasıl evrildiklerinin incelenmesi sayesinde, evrimin gelecekte nasıl ilerleyeceğine ilişkin bir fikir edinmek pek mümkün değil. “Ortaya çıkan tabloya bakılırsa, şansın rolü o denli büyük ki, gelecekte evrimin nasıl ilerleyeceğine ilişkin uzun vadeli öngörü yapmak riskli olur,” diyor Thornton. Yapılan çalışmalar, bugünkü proteinlerin neden yapmakta oldukları şeyi yaptıklarına ilişkin yanıtlar sunmaları açısından yine de çok önemli.

Yüksek boyutta görmek için görselin üzerine tıklayın.

Yüksek boyutta görmek için görselin üzerine tıklayın.

Thornton’un çalışmasından bir örnek vermek gerekirse, steroid reseptörlerindeki DNA bağlanma bölgelerinin, DNA hedefleri ile birlikte nasıl evrildiğinden söz edebiliriz. Hormon aktiveli reseptörler, belli genleri açmak için DNA’nın özel kısımlarına bağlanan transkripsiyon faktörü görevi görüyor. 2014 yılında Thornton’un ekibi Cell dergisinde yayımladıkları yazıda, atalardan kalma proteinlerden birindeki büyükçe bir amino asitin, bugünkü steroid reseptörlerinin çoğu tarafından beğenilen DNA bölümüne proteinin bağlanmasını engellediği açıklandı7. Antik protein tuhaf bir şekilde DNA’dan geri sıçrıyordu ve tutunmasına yetecek teması sağlayamıyordu. Reseptörün yeni özelliğini kazanması, mutasyonların bu engellere son vermesi ile oldu.

Araştırmacılar çoğu zaman birbirleri ile ilişkili iki protein arasındaki hangi farkların onları farklı davranmaya ittiğini söyleyemez. Ama evrimsel yollarını yeniden yapılandırmak, onları doğru yöne sevk edebilir. Theobald ile Brandeis Üniversitesi’nden meslektaşı Dorothee Kern, kronik miyeloid lösemi ile ilgili büyümeyi sağlayan bir protein olan Abl’nin, ilişkili olduğu Src proteininden nasıl farklılaştığını inceledi. Araştırmacılar, kansere karşı geliştirilen Gleevec ilacının neden Abl’ye bağlanıp kapatırken, benzer yapıdaki Src’yi engellemediğini bilmek istiyordu. Theobald, Kern ve çalışma arkadaşları, Abl’de Gleevec’in bağlanması konusunda önem taşıyan 15 amino asit belirledi. Bu amino asiter, iki farklı konfigürasyon arasında protein geçişlerinin nasıl olacağını etkiliyordu. Elde edilen bulgular geçtiğimiz yıl Science dergisinde yayımlanan bir makale ile paylaşıldı8.

Bazı proteinler veya protein kısımları, içsel olarak evrime diğerlerinden daha açık olabilir. Çok hızlı evrilen bir viral protein olanhemagglutinin’in belli kısımları değişime karşı alışılmadık derecede dayanıklıdır. Konu üzerinde çalışan Bloom ve Bargavi Thyagarajan’ın 2014’te eLife dergisinde yayımladıkları makaleye göre, hemagglutinine karşı geliştirilen antibiyotikler bağışıklık sisteminin gribe karşı en iyi savunması olmakla birlikte, protein de yakalanmadan sızmakta ustaydı9.

Yüksek boyutta görmek için görselin üzerine tıklayın.

Yüksek boyutta görmek için görselin üzerine tıklayın.

Araştırmacılar nispeten yeni bir yöntem kullandı: Derin Mutasyonel Tarama. Bu sayede laboratuvarda yetiştirilen virüslerdeki hemagglutinin proteinlerini, mümkün olan neredeyse tüm amino asit değişiklikleri ile yapılandırıp sınadılar. Bir ev sahibinde, hemagglutinini bağışıklık sisteminden saklayacak değişimler avantajlı oluyordu. Laboratuvar ortamında saklancak bir bağışıklık sistemi olmasa da, virüsler yine de proteinin başka yerlerindeki değişikliklerden çok, hemagglutinin parçalarındaki değişikliklerde hayatta kalabildi. Bloom ve lisansüstü öğrencisi Michael Doud, proteinin daha detaylı bir görüntüsünü ve mutasyona dayanabilen bölgelerini, Nisan ayındabioRxiv.org sitesinde yayımladıkları makale ile paylaştı.

Bu virüs için iyi ama insanlar için kötü. Görünüşe bakılırsa hemagglutinin, tam da aşı üreticilerinin aynı kalmasını isteyecekleri bölgelerinde fazlasıyla değişiklik yapabiliyor. Araştırmacılar aşı hazırlayanların hemagglutinin’in mutasyona daha dayanıksız olan bölgelerini hedef almalarını öneriyor. Bu stratejiyi uygulamaya koyan laboratuvarlar oldu bile. Henüz neden hemagglutinin belli parçalarının değişimleri daha iyi karşıladığı açık değil. Bloom ileride bunu da anlamayı umuyor.

“Evrimi hiçbir zaman tam olarak öngöremeyeceğiz, çünkü son derece stokastik bir süreç,” diyor Bloom. “Ama sanıyorum bizi etkileyen evrimsel süreçlerin çoğu hakkında daha iyi tahminler yapabiliriz. Bunlar gerçekten zorlayıcı problemler, ama galiba deneylerden yararlanabileceğimiz bir noktaya varıyoruz ve moleküler düzeyde olanları anlamak, süreç hakkında düşünmemize yardımcı oluyor.”


Kaynak:

  • Bilimfili,
  • Science News, “Scientists dig up proteins from the past”
    < https://www.sciencenews.org/article/scientists-dig-proteins-past >

Notlar:
[1] Lizhi Ian Gong Marc A Suchard Jesse D Bloom Stability-mediated epistasis constrains the evolution of an influenza proteine eLİFE DOI: http://dx.doi.org/10.7554/eLife.00631 Published May 14, 2013 Cite as eLife 2013;2:e00631
[2] Jamie T. Bridgham, Eric A. Ortlund & Joseph W. Thornton An epistatic ratchet constrains the direction of glucocorticoid receptor evolution Nature 461, 515-519 (24 September 2009) | doi:10.1038/nature08249; Received 12 May 2009; Accepted 30 June 2009
[3] Michael J. Harms & Joseph W. Thornton Historical contingency and its biophysical basis in glucocorticoid receptor evolution Nature 512, 203–207 (14 August 2014) doi:10.1038/nature13410 Received 24 January 2014 Accepted 28 April 2014 Published online 15 June 2014
[4] Douglas P Anderson Dustin S Whitney Victor Hanson-Smith Arielle Woznica William Campodonico-Burnett Brian F Volkman Nicole King Joseph W Thornton Kenneth E Prehoda Evolution of an ancient protein function involved in organized multicellularity in animals DOI: http://dx.doi.org/10.7554/eLife.10147 Published January 7, 2016 Cite as eLife 2016;5:e10147
[5] Jeffrey I Boucher Joseph R Jacobowitz Brian C Beckett Scott Classen Douglas L Theobald An atomic-resolution view of neofunctionalization in the evolution of apicomplexan lactate dehydrogenases DOI: http://dx.doi.org/10.7554/eLife.02304 Published June 25, 2014 Cite as eLife 2014;3:e02304
[6] Kathryn M. Hart, Michael J. Harms, Bryan H. Schmidt, Carolyn Elya, Joseph W. Thornton, Susan Marqusee Thermodynamic System Drift in Protein Evolution PLOS Biology Published: November 11, 2014http://dx.doi.org/10.1371/journal.pbio.1001994
[7] Alesia N. McKeown4, Jamie T. Bridgham, Dave W. Anderson, Michael N. Murphy, Eric A. Ortlund, Joseph W. Thornton Evolution of DNA Specificity in a Transcription Factor Family Produced a New Gene Regulatory Module Cell DOI: http://dx.doi.org/10.1016/j.cell.2014.09.003
[8] C. Wilson, R. V. Agafonov, M. Hoemberger, S. Kutter, A. Zorba, J. Halpin, V. Buosi, R. Otten1, D. Waterman, D. L. Theobald, D. Kern Using ancient protein kinases to unravel a modern cancer drug’s mechanism Science 20 Feb 2015: Vol. 347, Issue 6224, pp. 882-886 DOI: 10.1126/science.aaa1823
[9] Thyagarajan B, Bloom JD The inherent mutational tolerance and antigenic evolvability of influenza hemagglutinin. Elife. 2014 Jul 8;3. doi: 10.7554/eLife.03300.

Vücudunuzda Gözlemleyebileceğiniz Evrimsel Kanıtlar

Garip gelebilir ancak vücudunuz kimsenin artık ihtiyaç duymadığı antik kalıntılarla dolu bir müze gibidir. Yirmilik dişlerinizden tutun da bazılarımızın garip bir şekilde yapabildiği kulak oynatma hareketine kadar, insanlarda son bulmuş ancak hayvan atalarımız için yaşamsal düzeyde öneme sahip birçok kalıntı görebilirsiniz. Milyonlarca yıl boyunca ortadan kalkmamış olan bu garip kalıntıları ancak doğal seçilim tarafından sürdürülen evrim çerçevesinde açıklayabilmek mantıklıdır.

İşte hemen kendi vücudunuzda gözlemleyebileceğiniz bir tanesi: Eğer kolunuzu dirseğiniz üzerinde avuçlarınız yukarıya bakacak şekilde bir masaya uzatırsanız ve baş parmağınızı serçe parmağınıza dokundurursanız, bileğinizin ortasında bir tendonun ortaya çıktığını göreceksiniz. Ne alaka diyeceksiniz :) Ancak şöyle ki; eğer bu tendon sizde çıkmıyorsa, şanslısınız demektir çünkü insanların %10 ila 15’i bir kolunda ya da iki kolunda birden bu çıkıntı olmadan dünyaya geliyorlar. Bu tendon; birçoğumuzda bulunan palmaris longus isimli kolun ön yüzündeki yüzeyel aksesuar bir kastır, fakat bu kasın burada bulunuyor olmasının herhangi bir sebebi yoktur. Araştırmacılar, kolumuzun ön yüzeyindeki bu kasın varlığının bize; bu kası olmadan doğan insanlardan farkedilebilir bir güçlülük ya da kavrama yetisi sağlamadığı bulgusuna eriştiler. Ve aslında, oldukça gereksiz bir kas. Cerrahlar genellikle bu kası çıkarırlar ve vücudun herhangi bir yerindeki plastik cerrahi operasyonları ya da yeniden şekillendirmelerde kullanırlar.

Peki neden böylesi bir kullanışsız kasa sahibiz?

Bilim insanları, palmaris longusun günümüzdeki birçok memeli türünde varolduğunu ve özellikle de hareket için ön kolunu kullanan lemur ve maymunlar gibi hayvanlarda daha gelişmiş olduğu bulgusuna eriştiler.
Ve bir tane daha: Kulağınızın etrafında bulunan üç kası hareket ettirerek kulağınızı hafifçe oynatabileceğinizi biliyor musunuz? Oynatabildiniz mi? Eğer başardıysanız bravo, çünkü hayvan atalarımız için hayati önemde ancak insanlarda herhangi bir işe yaramayan evrimsel bir kalıntıyı kullanabildiniz demektir –ne işinize yarayacaksa.–

Günümüzde de geceleri ortaya çıkan birçok hayvan –örneğin; tavşanlar, ceylanlar, kediler vb.– kulağındaki bu kaslara büyük oranda ihtiyaç duyar, böylelikle kulaklarını oynatarak, sağa sola çevirerek, sesin kaynağını daha iyi saptayabilirler. Evrimleştiğimiz canlılar milyonlarca yıl önce aynı tekniği kullanmış olabilirler ve biz atalarımızın bir zamanlar kullandığı bu “ekipmanı” tamamen kaybetmiş değiliz.

Öte yandan, kulak hareketinden sorumlu bu üç kas kalıntısı yalnızca bir kalıntı değildir. Araştırmalara göre, bu kaslar sese hala tepki veriyor. Her ne kadar kulaklarımızı daha fazla hareket ettirmemize olanak sunmasa da, yapabildiklerinin en iyisini yapıyorlar.

Tüylerin ürpermesinden, kuyruk kemiğine, üçüncü göz kapağı kalıntısına kadar vücudumuz antik atalarımızın yetilerine dair ipuçları veren bolca örnekten yalnızca birkaçı. Aşağıdaki Vox videosu bu örnekleri bize gösteriyor.

Kaynak: Bilimfili

Afrika’dan Çıktığımızdan Beri Zararlı Mutasyon Biriktiriyoruz

Modern insanların (Homo sapiens) ilk olarak Afrika’da 150.000 yıl önce ortaya çıktığı düşünülmektedir. 100.000 yıl sonra da bir kısmının asıl doğdukları toprakları bırakarak önce Asya’ya sonra da daha doğuya ve Bering Boğazı’nı geçerek Amerika’da kolonileşmek üzere yolculuğa başladıkları biliniyor. Excoffier ve araştırma arkadaşları yeni bir teorik model geliştirerek, insanların küçük gruplar halinde göç etmeleri halinde orijinal Afrika’lı ailelerinden iyice uzaklaşarak, genetik olarak koparak bir ‘mutasyon yığını’ olmak üzere zararlı mutasyonları biriktireceklerini öne sürdü. Dahası, bir popülasyonun sahip olduğu bu mutasyon birikiminin, Afrika’dan çıktıklarından bugüne kadar alınan yolu hatta izlenen güzergahı gösterebileceği öne sürüldü.Kısacası; bugün Meksika’lı bir bireyin Afrika orijinli bir bireyden daha fazla zararlı genetik değişken bulunduruyor olmalı.

Hipotezlerini test etmek için araştırmacılar, Afrika dışındaki ve içindeki yedi ayrı popülasyondan (Demokratik Kongo Cumhuriyeti, Namibya, Kamboçya, Cezayir, Pakistan, Sibirya, Meksika) elde edilen genomlardaki anlamlı dizilerin tümünün baz dizilimini çıkarmak (sekanslamak) üzere yeni jenerasyon sekanslama (NGS) teknolojisinden yararlandı. Daha sonra teorilerine uyumlu biçimde zararlı mutasyonların uzamsal yerleşkelerini (söz konusu mutasyonların DNA içerisindeki konumları) simüle etti. Bulgular ise teoriyi doğrular nitelikteydi; kişiye düşen az zararlı mutasyonların sayısı gerçekten de bireyin Güney Afrika’dan uzaklığı ile doğru orantılı olarak artıyor.

Afrika’dan daha uzakta olan popülasyonlardaki zararlı mutasyon yükünün veya sayısının daha çok olmasının temel sebebi ise doğal seçilimin küçük popülasyonlar için çok güçlü etkilerinin olmamasında yatıyor: küçük öncü kabilelerde, büyük popülasyonlara oranla zarar verici mutasyonlar daha düşük verimliliklerle arındırılmış oluyor. Buna ek olarak, Afrika’dan çıkarak çok uzak noktalarda yerleşip kalacak olan topluluklarda asıl zaman yolculukla geçtiği için, doğal seçilimin işini yapması için yeterli vakti olmuyor.

Araştırmanın yazarlarından Stephan Peischl’in konu ile ilgili açıklaması şöyle : ” Düşük derecede zararlı olan mutasyonların, yaklaşık 1000 jenerasyondan daha fazla sürmüş olan Afrika’dan dışarı yayılma sırasında nötr fenomenler olarak evrimleştiğini keşfettik. Buna karşın, çok zararlı mutasyonlar, sanki bir bireyin dayanabileceği bir eşik seviyesi varmış gibi (ya da bu duruma işaret edecek biçimde), Dünya’daki her bireyde benzer oranlarda veya frekanslarda bulunuyor.”

Laurent Excoffier ise : ” 50 bin yıl önce başlayan göçlerin insan genetik çeşitliliği üzerinde bugünde takip edilebilecek işaretler bırakmış olması mükemmel bir şey, ancak bunu gözlemlemek için tüm kıtalardan farklı popülasyonlara ait devasa bir genetik dizi verisine sahip olmak gerekiyor. Yalnızca 5 sene önce bile, bu mümkün değildi.” şeklinde bir açıklamada bulundu.

Araştırma Proceedings of the National Academy of Sciences dergisinde yayımlandı.


Kaynak :

  • Bilimfili,
  • Brenna M. Henn, Laura R. Botigué, Stephan Peischl, Isabelle Dupanloup, Mikhail Lipatov, Brian K. Maples, Alicia R. Martin, Shaila Musharoff, Howard Cann, Michael P. Snyder, Laurent Excoffier, Jeffrey M. Kidd, Carlos D. Bustamante. Distance from sub-Saharan Africa predicts mutational load in diverse human genomes.Proceedings of the National Academy of Sciences, 2015; 201510805 DOI:10.1073/pnas.1510805112

Evrimsel Süreçte Erkekler Neden Var Oldu?

Evrimsel seçilim tamamen verimliliğe dayalıdır. Peki bu süreçte erkeklerin varlığını sürdürmelerinin sebebi nedir? Ya da seks; üreme için neden baskın mekanizma olmuştur? Nature‘da yayımlanan yeni bir araştırmada bu sorular cevaplandı.

University of East Anglia’s School of Biological Sciences’dan Matt Gage; cinsel seçilimin (eş seçiminde erkeklerin dişi bireyler tarafından seçilebilmek için yarışmaları) yüksek düzeyde soy içi üremeden (ensest) kaynaklanan genetik stresin varlığı olsa bile, popülasyonların yok olmasını engellediği gibi popülasyonun genel sağlığını da güçlendirdiğini söylüyor.

Seksteki Sorunlar

İki farklı cinsiyetin varlığı; türün hangi bireyinin genlerinin bir sonraki nesile aktarılacağını belirleyen cinsel seçilim sürecini destekleyicidir. Gage seksin yaygın ve güçlü bir etki olduğunu ancak pratikte ortaya çıkan kalıtsal sorunlardan kaynaklı olarak neden böyle bir şeyin varolduğuna dair açıklama yapmanın zor olduğunu söylüyor.

Matt Gage:

“Seks, aseksüel üremeye kıyasla önemli sınırlandırmalara sahiptir. Sekste şu sınırlılıklar söz konusudur; 

a) döllerin yarısı (erkekler) yavru üretmezler
b) yavrudaki genlerin yalnızca yarısı size aittir
c) eş bulma ve onunla çiftleşme için gereken bedelleri ödemek zorundasınız; zaman harcamalı, efor göstermeli ve “acı” çekmelisiniz
d) eğer tamamen adapte olmuş gen komplekslerini taşıyorsanız, bu genler cinsel birleşme ile bir sonraki nesile “bozulmuş” ve derişimi biraz daha seyrelmiş halde taşınır.

Seksin bu dört sonucu, yalnızca dişi yavruların erkeğe ihtiyaç duymadan yeni dişiler ürettiği aseksüel üremeye kıyasla ciddi sınırlandırmalar içerir. Peki durum böyleyse neden sex ve erkeklerin varlığı üremedeki baskınlıklardan birisi olarak evrimleşmiştir?” diyor.

Cinsel Seçilim Modeli Olarak Tribolium Un Böceklerinin Kullanılması

Araştırmanın bir parçası olarak, ekip kontrollü laboratuvar koşullarında Tribolium un böceklerinin 50 neslini 10 yılı aşkın bir süre boyunca gözlemlediler. Araştırma çerçevesinde türün üremek için neden sekse başvurduğunu ve cinsel seçilimin evrimdeki rolünü anlamaya çalıştılar.

Peki araştırma için neden Tribolium un böcekleri seçildi?

Tribolium un böcekleri üremenin evrimini anlık gözlemleyebilmek için en iyi modeldir ve oldukça fazla sayıda deneysel deneme durumu araştırmaya istatistiksel güç gerçeklik katar. Bu türün nesil üretme süresi yaklaşık bir aydır, bu da deneysel evrimin gerçekleştirilmesine ve böceğin soy ve popülasyonlarının kontrol edilen durumlar altında gözlemlenebilmesine olanak sunar.

Ayrıca Gage; Tribolium un böceklerinin; erkeklerin yavrular için doğrudan bir ilgi göstermediği gelişi güzel bir eşleşme aracılığıyla ürediklerini söylüyor. Bu durum doğada oldukça yaygındır, dolayısıyla bu canlıların “denek” olarak kullanılması bulguların daha genele yayılabileceğine olanak tanır.

Erkekler Genom Sağlığında Önemli Bir Role Sahipler

Deneylerde, cinsel seçilim etkisi; yoğun yarıştan (bir dişiye dokuz erkek oranında) yarışın olmadığı (bir dişiye bir erkek) bir duruma değiştirildi. Yani cinsel seçilim ortadan kaldırıldı. 7 yılın ve yaklaşık 50 nesilin ardından araştırma ekibi; soy içi çiftleştirme (ensest) yaptılar ve cinsel seçilimin olduğu popülasyonlarda (1 dişiye 9 erkek oranı) yok olma tehditinin, cinsel seçilim olmayan popülasyonlara (1 dişiye 1 erkek oranı) kıyasla yok olma tehdidini daha çabuk aşabildikleri sonucuna ulaştılar.

Cinsel seçilimin bulunduğu bazı popülasyonlar 20 nesil soy içi döllenme yapılmasına rağmen hayatta kalmayı başardılar. Buna karşın, cinsel seçilim etkisinin olmadığı popülasyonlar ise soy içi döllenmenin onuncu neslinde tamamen yok oldular. Gage bulguların; erkekler arasındaki yarışın popülasyonun genel genetik sağlığını geliştirdiğini gösterdiğini söylüyor.

Gage; erkekler ve seksin evrimsel süreçte varlığını sürdürmesinin iki temel sebebi olduğunu söylüyor ve ekliyor:

“Seks “kötü” genomları popülasyondan temizliyor ve/veya seks “iyi” genomların tür boyunca yayılmasına yardımcı oluyor.”

Seks, aseksüel üremeye kıyasla bazı sınırlılıklar içerse de evrimsel süreçte önemli bir parametre olan çeşitliliğin ortaya çıkmasına sebep oluyor. Çeşitliliği ortaya çıkaran iki cinsiyetli (erkek ve dişi) üreme biçimi evrimsel süreçte bir avantaj sunuyor. Dolayısıyla erkeğin evrimsel süreçteki varlığını sürdürmesi ve eşeyli üremenin (seks) süregelmesi popülasyonların genel genom sağlığını iyileştirerek türü yok olmaktan kurtarıp, çevreye uyumlu hale getiriyor.


Kaynak: Chuck Bednar, “Why does evolution allow males to exist?”, http://www.redorbit.com/news/science/1113392650/why-does-evolution-allow-males-to-exist-051815/

Evrimsel seçilim tamamen verimliliğe dayalıdır. Peki bu süreçte erkeklerin varlığını sürdürmelerinin sebebi nedir? Ya da seks; üreme için neden baskın mekanizma olmuştur? Nature‘da yayımlanan yeni bir araştırmada bu sorular cevaplandı.

University of East Anglia’s School of Biological Sciences’dan Matt Gage; cinsel seçilimin (eş seçiminde erkeklerin dişi bireyler tarafından seçilebilmek için yarışmaları) yüksek düzeyde soy içi üremeden (ensest) kaynaklanan genetik stresin varlığı olsa bile, popülasyonların yok olmasını engellediği gibi popülasyonun genel sağlığını da güçlendirdiğini söylüyor.

Seksteki Sorunlar

İki farklı cinsiyetin varlığı; türün hangi bireyinin genlerinin bir sonraki nesile aktarılacağını belirleyen cinsel seçilim sürecini destekleyicidir. Gage seksin yaygın ve güçlü bir etki olduğunu ancak pratikte ortaya çıkan kalıtsal sorunlardan kaynaklı olarak neden böyle bir şeyin varolduğuna dair açıklama yapmanın zor olduğunu söylüyor.

Matt Gage:

“Seks, aseksüel üremeye kıyasla önemli sınırlandırmalara sahiptir. Sekste şu sınırlılıklar söz konusudur; 

a) döllerin yarısı (erkekler) yavru üretmezler
b) yavrudaki genlerin yalnızca yarısı size aittir
c) eş bulma ve onunla çiftleşme için gereken bedelleri ödemek zorundasınız; zaman harcamalı, efor göstermeli ve “acı” çekmelisiniz
d) eğer tamamen adapte olmuş gen komplekslerini taşıyorsanız, bu genler cinsel birleşme ile bir sonraki nesile “bozulmuş” ve derişimi biraz daha seyrelmiş halde taşınır.

Seksin bu dört sonucu, yalnızca dişi yavruların erkeğe ihtiyaç duymadan yeni dişiler ürettiği aseksüel üremeye kıyasla ciddi sınırlandırmalar içerir. Peki durum böyleyse neden sex ve erkeklerin varlığı üremedeki baskınlıklardan birisi olarak evrimleşmiştir?” diyor.

Cinsel Seçilim Modeli Olarak Tribolium Un Böceklerinin Kullanılması

Araştırmanın bir parçası olarak, ekip kontrollü laboratuvar koşullarında Tribolium un böceklerinin 50 neslini 10 yılı aşkın bir süre boyunca gözlemlediler. Araştırma çerçevesinde türün üremek için neden sekse başvurduğunu ve cinsel seçilimin evrimdeki rolünü anlamaya çalıştılar.

Peki araştırma için neden Tribolium un böcekleri seçildi?

Tribolium un böcekleri üremenin evrimini anlık gözlemleyebilmek için en iyi modeldir ve oldukça fazla sayıda deneysel deneme durumu araştırmaya istatistiksel güç gerçeklik katar. Bu türün nesil üretme süresi yaklaşık bir aydır, bu da deneysel evrimin gerçekleştirilmesine ve böceğin soy ve popülasyonlarının kontrol edilen durumlar altında gözlemlenebilmesine olanak sunar.

Ayrıca Gage; Tribolium un böceklerinin; erkeklerin yavrular için doğrudan bir ilgi göstermediği gelişi güzel bir eşleşme aracılığıyla ürediklerini söylüyor. Bu durum doğada oldukça yaygındır, dolayısıyla bu canlıların “denek” olarak kullanılması bulguların daha genele yayılabileceğine olanak tanır.

Erkekler Genom Sağlığında Önemli Bir Role Sahipler

Deneylerde, cinsel seçilim etkisi; yoğun yarıştan (bir dişiye dokuz erkek oranında) yarışın olmadığı (bir dişiye bir erkek) bir duruma değiştirildi. Yani cinsel seçilim ortadan kaldırıldı. 7 yılın ve yaklaşık 50 nesilin ardından araştırma ekibi; soy içi çiftleştirme (ensest) yaptılar ve cinsel seçilimin olduğu popülasyonlarda (1 dişiye 9 erkek oranı) yok olma tehditinin, cinsel seçilim olmayan popülasyonlara (1 dişiye 1 erkek oranı) kıyasla yok olma tehdidini daha çabuk aşabildikleri sonucuna ulaştılar.

Cinsel seçilimin bulunduğu bazı popülasyonlar 20 nesil soy içi döllenme yapılmasına rağmen hayatta kalmayı başardılar. Buna karşın, cinsel seçilim etkisinin olmadığı popülasyonlar ise soy içi döllenmenin onuncu neslinde tamamen yok oldular. Gage bulguların; erkekler arasındaki yarışın popülasyonun genel genetik sağlığını geliştirdiğini gösterdiğini söylüyor.

Gage; erkekler ve seksin evrimsel süreçte varlığını sürdürmesinin iki temel sebebi olduğunu söylüyor ve ekliyor:

“Seks “kötü” genomları popülasyondan temizliyor ve/veya seks “iyi” genomların tür boyunca yayılmasına yardımcı oluyor.”

Seks, aseksüel üremeye kıyasla bazı sınırlılıklar içerse de evrimsel süreçte önemli bir parametre olan çeşitliliğin ortaya çıkmasına sebep oluyor. Çeşitliliği ortaya çıkaran iki cinsiyetli (erkek ve dişi) üreme biçimi evrimsel süreçte bir avantaj sunuyor. Dolayısıyla erkeğin evrimsel süreçteki varlığını sürdürmesi ve eşeyli üremenin (seks) süregelmesi popülasyonların genel genom sağlığını iyileştirerek türü yok olmaktan kurtarıp, çevreye uyumlu hale getiriyor.


Kaynak:

  1. Bilimfili,
  2. Chuck Bednar, “Why does evolution allow males to exist?”, 
  3. Alyson J. Lumley, Łukasz Michalczyk, James J. N. Kitson, Lewis G. Spurgin, Catriona A. Morrison, Joanne L. Godwin, Matthew E. Dickinson, Oliver Y. Martin, Brent C. Emerson, Tracey Chapman & Matthew J. G. Gage Sexual selection protects against extinction Nature 522, 470–473 (25 June 2015) doi:10.1038/nature14419 Received 12 January 2015 Accepted 18 March 2015 Published online 18 May 2015 Corrected online 24 June 2015

Afrika’dan Çıktığımızdan Beri Zararlı Mutasyon Biriktiriyoruz

Modern insanların (Homo sapiens) ilk olarak Afrika’da 150.000 yıl önce ortaya çıktığı düşünülmektedir. 100.000 yıl sonra da bir kısmının asıl doğdukları toprakları bırakarak önce Asya’ya sonra da daha doğuya ve Bering Boğazı’nı geçerek Amerika’da kolonileşmek üzere yolculuğa başladıkları biliniyor. Excoffier ve araştırma arkadaşları yeni bir teorik model geliştirerek, insanların küçük gruplar halinde göç etmeleri halinde orijinal Afrika’lı ailelerinden iyice uzaklaşarak, genetik olarak koparak bir ‘mutasyon yığını’ olmak üzere zararlı mutasyonları biriktireceklerini öne sürdü. Dahası, bir popülasyonun sahip olduğu bu mutasyon birikiminin, Afrika’dan çıktıklarından bugüne kadar alınan yolu hatta izlenen güzergahı gösterebileceği öne sürüldü.Kısacası; bugün Meksika’lı bir bireyin Afrika orijinli bir bireyden daha fazla zararlı genetik değişken bulunduruyor olmalı.

Hipotezlerini test etmek için araştırmacılar, Afrika dışındaki ve içindeki yedi ayrı popülasyondan (Demokratik Kongo Cumhuriyeti, Namibya, Kamboçya, Cezayir, Pakistan, Sibirya, Meksika) elde edilen genomlardaki anlamlı dizilerin tümünün baz dizilimini çıkarmak (sekanslamak) üzere yeni jenerasyon sekanslama (NGS) teknolojisinden yararlandı. Daha sonra teorilerine uyumlu biçimde zararlı mutasyonların uzamsal yerleşkelerini (söz konusu mutasyonların DNA içerisindeki konumları) simüle etti. Bulgular ise teoriyi doğrular nitelikteydi; kişiye düşen az zararlı mutasyonların sayısı gerçekten de bireyin Güney Afrika’dan uzaklığı ile doğru orantılı olarak artıyor.

Afrika’dan daha uzakta olan popülasyonlardaki zararlı mutasyon yükünün veya sayısının daha çok olmasının temel sebebi ise doğal seçilimin küçük popülasyonlar için çok güçlü etkilerinin olmamasında yatıyor: küçük öncü kabilelerde, büyük popülasyonlara oranla zarar verici mutasyonlar daha düşük verimliliklerle arındırılmış oluyor. Buna ek olarak, Afrika’dan çıkarak çok uzak noktalarda yerleşip kalacak olan topluluklarda asıl zaman yolculukla geçtiği için, doğal seçilimin işini yapması için yeterli vakti olmuyor.

Araştırmanın yazarlarından Stephan Peischl’in konu ile ilgili açıklaması şöyle : ” Düşük derecede zararlı olan mutasyonların, yaklaşık 1000 jenerasyondan daha fazla sürmüş olan Afrika’dan dışarı yayılma sırasında nötr fenomenler olarak evrimleştiğini keşfettik. Buna karşın, çok zararlı mutasyonlar, sanki bir bireyin dayanabileceği bir eşik seviyesi varmış gibi (ya da bu duruma işaret edecek biçimde), Dünya’daki her bireyde benzer oranlarda veya frekanslarda bulunuyor.”

Laurent Excoffier ise : ” 50 bin yıl önce başlayan göçlerin insan genetik çeşitliliği üzerinde bugünde takip edilebilecek işaretler bırakmış olması mükemmel bir şey, ancak bunu gözlemlemek için tüm kıtalardan farklı popülasyonlara ait devasa bir genetik dizi verisine sahip olmak gerekiyor. Yalnızca 5 sene önce bile, bu mümkün değildi.” şeklinde bir açıklamada bulundu.

Araştırma Proceedings of the National Academy of Sciences dergisinde yayımlandı.


Kaynak : Bilimfili, Brenna M. Henn, Laura R. Botigué, Stephan Peischl, Isabelle Dupanloup, Mikhail Lipatov, Brian K. Maples, Alicia R. Martin, Shaila Musharoff, Howard Cann, Michael P. Snyder, Laurent Excoffier, Jeffrey M. Kidd, Carlos D. Bustamante. Distance from sub-Saharan Africa predicts mutational load in diverse human genomes.Proceedings of the National Academy of Sciences, 2015; 201510805 DOI:10.1073/pnas.1510805112

Hollandalı Erkeklerin Dünya’nın En Uzunları Olma Nedeni Cinsel Seçilim!

Hollandalı erkekler uzundur, çünkü Hollandalı kadınlar böyle severler. Bilim insanları, Hollandalı erkeklerin son 200 senede gelişmiş ülkelerin uzunluk ortalamasının 18 santimetre kadar üzerine çıkmış olan boy uzunluğunun arkasında yatan nedenin Cinsel Seçilim olduğunu tespit etti.

18. yüzyılın ortalarında Hollandalı askerlerin ortalama boy uzunluğu 165 santimetre kadardı. Kraliyet Cemiyeti tarafından yayınlanan makaleye göre o zamanlarda Amerikan askerleri Hollandalılar’ın ortalamasından 8 santimetre daha uzundu!
Ancak işler değişti. Hollandalı erkekler, ortalamda 184 santimetre ile şu anda Dünya’nın en uzun erkekleridir. Onların hemen arkasından İskandinavlar gelir ve bu iki toplumun erkekleri de, ortalama 178 santimetre boy uzunluğuna sahip Amerikalılar’dan fazlasıyla uzundur. Amerikalıların boy ortalaması son 200 yılda sadece 6 santimetre artmıştır. Hollandalıların boyu ise aynı zaman diliminde 20 santimetre artmıştır.
Diğer gelişmiş ülkelerde de yıllar geçtikçe boy ortalaması artmıştır; ancak bu artış Hollanda’da olduğundan çok daha önce ya yavaşlamıştır ya da tamamen durmuştur. Hollanda’da ise boy uzunluğu artışı, çok yakın bir zamanda yavaşlamaya başlamıştır.
Hollandalıların boylarındaki bu ciddi artış bugüne kadar hep göreli zenginlik ve zengin bir diyet gibi çevresel faktörlere bağlanmıştı. Ancak Londra Hijyen ve Tropik Tıp Fakültesi’nden Gert Stulp tarafından yapılan yeni bir araştırma, bu değişimin ana nedeninin Cinsel Seçilim olduğunu ileri sürüyor.
Stulp ve arkadaşları 168.000 Hollandalı insandan, 1935-1967 yılları arasında elde edilen verileri incelediler ve gerçekten de kadınların uzun eşler istemesinin boy artışında rol oynadığını buldular. Ortalamadan daha uzun erkekler daha fazla çocuk sahibi olmuşlardı, dolayısıyla daha fazla çocukları hayatta kalabilmişti. Ortalamanın altındaki erkekler ise daha düşük ihtimalle üreyebilmişlerdi.
Kadınlar arasındaysa ortalama boya daha yakın olanlar daha fazla çocuk yapmıştı. Bunun kısmi nedeni, ortalamadan uzun ya da kısa olan dişilerin daha az üreyebilmesidir. Ancak bir ilişkide kadın eğer ki uzunsa, diğerlerine göre ortalamada daha fazla çocuk yapmıştı.
Hem uzun erkekler, hem de uzun kadınlar ailelerini daha ilerleyen yaşlarda kurmuşlardı. Uzun erkekler birbirleriyle eğitim konusunda da rekabet halindeydi. Ancak iyi bir eğitim sonrasında bir eş bulup, çocuk yapmaya karar veriyorlardı. Ayrıca daha uzun olan erkeklerin, daha kısa olan hemcinslerine göre ortalamada daha yüksek gelire sahip olduğu da tespit edildi.
 
Not: Yazının orijinalinde Cinsel Seçilim yerine Doğal Seçilim kullanılmıştır. Bu teorik olarak kısmen doğru olsa da, pratikte çok isabetli bir açıklama değildir. Cinsel Seçilim, çok temel bir düzlemde bakıldığında Doğal Seçilim’in bir “alt başlığı” ya da “modu” olarak görülebilir. Fakat Cinsel Seçilim’i ayrıca değerlendirmek genellikle çok daha iyi ve isabetli sonuçlar verecektir. Genel olarak, Doğal Seçilim’in hayatta kalmayla, Cinsel Seçilim’in ise üremeyle ilgili seçilim baskılarından doğduğu düşünülebilir.
Kaynaklar ve İleri Okuma:
  1. Nature
  2. Quartz
  3. Schönbeck, Yvonne; Talma, Henk; Van Dommelen, Paula; Bakker, Boudewijn; Buitendijk, Simone E.; Hirasing, Remy A.; Van Buuren, Stef (2012). “The world’s tallest nation has stopped growing taller: The height of Dutch children from 1955 to 2009”. Pediatric Research 73 (3): 371–7. doi:10.1038/pr.2012.189.PMID 23222908.

Devrim Niteliğindeki 10 Bilimsel Teori!

Kapak Görseli: Nuremburg`da 1742 yılında basılan Johann Doppelmayr`ın Atlas coelestis adlı harita ve illüstrasyon derlemesinden Güneş merkezli Kopernik sistemi. [görselin yüksek boyutlu hali]

Son yüzyıllar içerisinde, bilimsel alanların çoğu en az bir tane devrim niteliğinde teori üretmiştir. Bazı yenilemeler ya da paradigma değişimleri; var olan bilgiyi yeni bir uygulamada yeniden kullanagelmiştir. Devrim niteliğindeki teoriler; yeni uygulamanın önceki düşünsel sistemlerin çözemediği problemleri alt etmesiyle başarıya ulaşmıştır. İşte favori diyebileceğimiz 10 bilimsel teori. Umuyoruz ki, daha fazlası da gelecek.

10. Bilgi Kuramı: Claude Shannon, 1948

Claude E. Shannon
Claude E. Shannon

Tam olarak devrim niteliğinde bir teori denemez, çünkü öncesinde; yıkıp yerine yenisinin inşa edileceği bir teori yoktu. Fakat Shannon; elektronik iletişim ve bilgisayar bilimini içeren diğer birçok devrim niteliğindeki teorinin gelişmesine matematiksel bir temel sağlamıştır. Bilgi kuramı olmasaydı, matkap uçları hala yalnızca matkaplar için kullanılıyor olacaktı.

9. Oyun Teorisi : John von Neumann ve Oscar Morgenstern, 1944 (1950’lerde John Nash’in önemli katkılarıyla birlikte)

John Nash
John Nash

Ekonomi için geliştirilmiştir ve bazı başarıları olmuştur, ancak oyun teorisi bu alanı kökten değiştirmemiştir. Öte yandan diğer birçok sosyal bilimler alanlarına uyarlanmıştır. Oyun Teorisi, bireyin, başarısının diğerlerinin seçimlerine dayalı olduğu seçimler yapması olan bazı stratejik durumların matematiksel olarak davranış biçimlerini yakalamaya çalışır. İlk başlarda bir bireyin kazancının ötekinin zararına olduğu (sıfır toplamlı oyunlar) yarışmaları çözümlemek için geliştirilmişse bile, daha sonradan birçok kısıta dayanan çok geniş bir etkileşim alanını incelemeye başlamıştır. Bugün, oyun kuramı, ‘sosyal’ kelimesinin geniş anlamda insan ve insan-dışı oyuncuları (bilgisayarlar, hayvanlar ve bitkiler) kapsayacak biçimde tanımlandığı, sosyal bilimlerin rasyonel yönü için bir ‘birleşik alan’ kuramı veya bir tür şemsiyedir(1). Ve evrimsel oyun teorisi, evrimsel biyolojinin önemli bir çalışma branşı halindedir. Hatta bu teori; poker ve futbol gibi aktivitelere de uygulanıyor.  Oyun teorisi, akademik ilginin yanı sıra, popüler kültürde de ilgi çekmiştir. Teoriye katkılarından dolayı Nobel Ödülü alan John Nash‘in sorunlu yaşamı harika bir kitabın da ilham kaynağı olmuştur; A Beautiful Mind. Ancak filmini izleyerek oyun teorisi hakkında bir şey öğrenmeyi beklemeyin.1983 yapımı WarGames filminin de ana teması oyun teorisi olmuştur. Friend or Foe, kısmen Survivor gibi televizyonda yayınlanan bazı yarışma programlarında bile oyun teorisinin izlerini sürmek mümkündür.

8. Oksijenli Yanma Teorisi: Antoine Lavoisier, 1970ler

Lavoisier'in ünlü Flogiston Deneyi
Lavoisier’in ünlü Flogiston Deneyi

Lavoisier, oksijeni keşfetmedi, ancak maddelerin yanmasına sebep olan gazın oksijen olduğunu ortaya çıkardı. Böylelikle de Lavoisier, yaygın olan Flogiston teorisini alt etmiş ve modern kimyanın gelişimine ortam hazırlamıştır. Ancak Lavoisier’in sonu da Galileo‘nun sonuna benzerdir. 1700’lerin son çeyreğinde kapitalizmin temeli sayılabilecek Fransız Sanayi Devrimi ile,“Cumhuriyetin bilginlere ihtiyacı yoktur” diyen yargıç; Lavoisier’in giyotinle idam edilmesinde karar kılmıştır.

7. Levha Tektonikleri : Alfred Wegener, 1912; J. Tuzo Wilson, 1960lar

Wegener kıtaların henüz 1912 yılında sürüklendiğini fark etmiştir. Fakat, bu durum 1960lara kadar bilim isanlarının levha tektoniklerinin kapsamlı bir teorisi altında topladıkları parçalardan birisi değildi. Kanadalı jeofizikçi, Wilson ise bazı eksik önemli parçaların teoriye katılmasına katkı sunmuştur.

6. İstatistiksel Mekanik: James Clerk Maxwell, Ludwig Boltzmann, J Willard Gibbs, 19. Yüzyıl’ın sonları

Isıyı, atom ve moleküllerin istatistiksel davranışıyla açıklamasıyla, istatistiksel mekanik; termodinamiğe anlam kazandırmış ve atomların gerçekliğine güçlü deliller sağlamıştır. Bunun yanı sıra, istatistiksel mekanik; fiziksel bilimlerde olasılıksal matematiğin rolünü de ortaya koydu. İstatistiksel mekanikteki (istatistiksel fizik de denir) modern genişlemeler; malzeme biliminden trafik sıkışıklıklarına ve oy verme davranışlarına ve hatta oyun teorisine kadar birçok şeye uygulanabilmiştir.

5. Özel Görelilik: Albert Einstein, 1905

1905 yılında Albert Einstein fizik yasalarının tüm ivmelenmeyen (duran veya sabit hızla ilerleyen) gözlemciler için aynı olacağını ve ışığın boşluktaki hızının gözlemcinin hareketinden bağımsız olduğunu ortaya koydu. Bu özel görelilik kuramıydı. Özel göreliliğin, klasik fiziğin büyük bir bölümü üzerinde yükselmesinden kaynaklı kavramsal düzeyde pek de devrimsel olduğu söylenemez, ancak uzay ile zamanı, madde ile enerjiyi birleştirmesiyle ve uzay seyahati sırasında yaşlanmanın daha yavaş olduğunu teorik olarak ortaya koymasıyla tam bir devrim yaptığını söyleyebiliriz.

4. Genel Görelilik: Einstein, 1915

Albert Einstein
Albert Einstein

Özel göreliliğe kıyasla, Genel Görelilik çok daha devrimseldir, çünkü Newton’ın kütle çekimi yasasından kurtularak bükülmüş uzay-zamanı ortaya koymuştur. Genel Görelilik kuramı denklemleri üzerinde çalıştıkça Einstein, kütleli nesnelerin uzay-zamanda bir çarpıtmaya yol açtığının farkına vardı. Bir trambolinin tam ortasına büyük bir nesne bıraktığınızı düşünün. Nesne kumaşı aşağı iterek çukurluk oluşturur. Tramboline bir de bilye bırakırsanız, bilye büyük nesnenin oluşturduğu çukurun sınırını geçtiğinde, sarmallar çizerek nesneye doğru iner. Bu tıpkı bir gezegenin çekim alanına giren bir göktaşının durumuna benzer. Bu devrim niteliğindeki teori; genişleyen evrenin bütün bir tarihine bakmaları noktasında bilim insanlarının gözlerini açtı.  (Einstein’ın Genel Görelilik Kuramı ve Bilinmesi Gereken 12 Madde)

3. Kuantum Teorisi: Max Planck, Einstein, Niels Bohr, Werner Heisenberg, Erwin Schrödinger, Max Born, Paul Dirac, 1900-1926

Schrödinger'in kedisi
Schrödinger’in kedisi

Kuantum teorisi, klasik fiziğin bütün parçalarını deyim yerindeyse lime lime etmiş, gerçekliğin doğasına ait sıradan kavramları yıkmış, neden-sonucun bütün felsefesini çöpe atmış ve doğanın garipliklerini ortaya çıkarmıştır. Kuantum mekaniğinin temelleri Max Planck, Albert Einstein, Niels Bohr, Werner Heisenberg, Erwin Schrödinger, Max Born,John von Neumann, Paul Dirac, Wolfgang Pauli  tarafından atılmıştır. Öyle ki, Albert Einstein tarafından da 1935’te ortaya atılmıştır ve tamamlanamamış olmasından kaynaklı olacak ki Einstein ve çalışma arkadaşlarını son derece rahatsız eden bir teori olmayı başarmıştır. Kuantum mekaniğigenel olarak küçük parçacıkların ve kuvvetlerinin mekanizmasını inceleyen bir teoridir.  Belirsizlik ilkesi, anti madde, Planck sabiti, kara cisim ışınımı, dalga kuramı, alan teorileri gibi kuramlar bu mekanik sayesinde geliştirilmiş ve klasik fiziğin bir anlamda çözemediği sorunları çözmeye çalışmıştır. Gerçekten de 3 numarada yer alıyor olmasına inanmak güç.

2. Evrim Teorisi (Doğal Seçilim): Charles Darwin, 1859

Charles Darwin
Charles Darwin

Darwin yaşamın dallı budaklı karmaşasını ve yaşam-formları arasındaki dallanmış ilişkiyi, doğal süreçlerden geçerek hayatta kalmayı; yaşamın herhangi bir doğa üstü yaratıcıya ya da Nuh gemisi gibi kurgu senaryolara bağlanamayacağını ortaya koyarak tam bir bilimsel devrim yapmıştır. Evrim teorisi; doğa üstü yargılarla gerçekten saptırılmayan doğa bilimlerinin geliştirilmesi noktasında insanlığın ufkunu ve beynini açmıştır. Darwin’in bu teorisi öyle bir devrim yapmıştır ki; bazı insanlar hala kabul edememiştir, ancak gerçek şu ki; EVRİM YÜRÜYOR. (Evrim konulu araştırmalar ve yazılarımız için)

1. Heliosentrizm (Güneş Merkezlilik) : Kopernik, 1543

Bazı antik Yunanlılar tarafından tasarlanmış ancak 2000 yıl sonra yer edinmiş, gelmiş geçmiş en önemli kavrayışlardan birisidir: Dünya ve diğer gezegenler Güneş etrafında dolanırlar. 1 numaramızda yer aldı çünkü birincidir. Başlığımızdaki “devrim” kelimesi de buradan geliyor. Kopernik’in 1543 yılında ölümünden çok kısa bir süre önce yayımlanan kitabı “De revolutionibus orbium coelestium” (Göksel Kürelerin Devinimleri Üzerine) bilim tarihinde önemli bir olay olarak yer edinmiştir. Kitap, Kopernik Devrimini başlatmış ve bilimsel devrime büyük ölçüde katkı sunmuştur.

Nicolaus Copernicus Heliosentrik Model "De revolutionibus orbium coelestium"
Nicolaus Copernicus, Heliosentrik Model “De revolutionibus orbium coelestium”

Kaynakça: Bilimfili

1- Aumann, Robert J. “Correlated equilibrium as an expression of Bayesian rationality.” Econometrica: Journal of the Econometric Society (1987): 1-18.
2- Enwikipedia, https://tr.wikipedia.org/wiki/Oyun_kuram%C4%B1#CITEREFAumann1987
3- Tom Siegfried, Science News. https://www.sciencenews.org/blog/context/top-10-revolutionary-scientific-theories
4- American Chemical Society International Historic Chemical Landmarks. Antoine-Laurent Lavoisier: The Chemical Revolution. http://www.acs.org/content/acs/en/education/whatischemistry/landmarks/lavoisier.html (accessed December 26, 2015)
5- Plate Tectonic Theory: Plate Boundaries and Interplate Relationships. http://csmres.jmu.edu/geollab/vageol/vahist/plates.html
6- Enwikipedia, “Statistical mechanics.” https://en.wikipedia.org/wiki/Statistical_mechanics
7- Bilimfili, “Einstein’ın Genel Görelilik Kuramı ve Bilinmesi Gereken 12 Madde,” http://bilimfili.com/einsteinin-genel-gorelilik-kurami-ve-bilinmesi-gereken-12-madde/
8- Bilimfili, “Neredeyse gerçek olamayacak kadar ilginç bir teori-kuantum,” http://bilimfili.com/neredeyse-gercek-olamayacak-kadar-ilginc-bir-teori-kuantum/
9- Bilimfili, “Kuantum Teori: Einstein Schrödinger’in Kedisini Kurtarıyor,” http://bilimfili.com/kuantum-teori-einstein-schrodingerin-kedisini-kurtarir/
10- Bilimfili, “Evrim”, http://bilimfili.com/kategori/biyoloji/evrim-biyoloji/
11- University of Nebrasca Lincoln, “Heliocentrism,” http://astro.unl.edu/naap/ssm/heliocentric.html
12- Enwikipedia. “Copernican heliocentrism,” https://en.wikipedia.org/wiki/Copernican_heliocentrism

Mağara İnsanları da Dahil Olmak Üzere Koku Duyumuz Nasıl Evrimleşti?

University of Alaska Fairbanks ve University of Manchester’dan araştırmacılar; koku duyumuzun nasıl evrimleştiği ve soyu tükenmiş insan atalarımızın koku duyusunu nasıl geliştirdikleri üzerine bir çalışma yürüttüler.

Koku duyusu, insan toplulukları içinde önemli bir role sahiptir. Çünkü bu duyumuz yiyeceklerin tadını alabilme ve bunun yanı sıra da hoş ve hoş olmayan maddeleri tanımlayabilme yetilerimizi de etkiler.

Burnumuzda yaklaşık 400 farklı tipe bölünmüş 4 milyon koku hücresi vardır. Kokuyu saptama yetisine dair populasyonlar arasında ve içerisinde çok büyük bir genetik çeşitlilik vardır. Her koku hücresi yalnızca bir türreseptör ya da “kilit” taşır –koku hava ile yayılır ve koku hücresinin “kilidine” girer ve hücreyi aktifleştirir.

Çoğu reseptör bir kokudan fazlasını saptayabilir, fakat bir tanesi var ki (OR7D4 isimli) bizi; androstenon  (yaban domuzu salyasında bolca bulunur) isimli çok spesifik bir kokuyu alabilmemizi sağlar. OR7D4 reseptörünüüretmeden sorumlu gende farklı DNA dizilimine sahip insanlar bu kokuya farklı tepkiler verir. Bazı insanlar pis koku olarak nitelendirirken, bazıları tatlı, bazıları ise bu kokuyu alamazlar. İnsanların ‘androstenon’a tepkileri sahip oldukları OR7D4 DNA dizilimine bakılarak tahmin edilebilir ya da kokuya verilen tepkiye göre insanların OR7D4 DNA diziliminin farklı olduğu anlaşılabilir.

Araştırma ekibi; Dünya’nın çeşitli yerlerindeki çoğunluğu yerel bölgelerden olan 43 populasyondan 2200’den fazla insanın OR7D4 reseptörünü kodlayan DNA’ları üzerine çalıştı. Araştırmacılar, farklı populasyonların; farklı gen dizilimine sahip olma eğiliminde oldukları dolayısıyla da kokuyu alma yetilerinin de farklılık gösterdiğibulgusuna ulaştılar.

Örneğin; Afrika’dan (Afirka’dan gelen) çalışmaya dahil edilen populasyonların kokuyu alabilme eğiliminde oldukları görülürken, kuzey yarım küre populasyonlarının kokuyu alamadıkları görüldü. Bu da demek oluyor ki; insan evrimi ilk olarak Afrika bölgesinde başladığına göre, onlar bu kokuyu saptayabiliyorlardı.

Dünya’nın çeşitli yerlerindeki populasyonlardaki OR7D4 reseptöründen sorumlu genin farklı formlarına dair frekanslarının istatistiksel analizleri; bu genin farklı formlarının doğal seçilime maruz kalmış (tabi olmuş) olabileceğini ortaya koyuyor.

Bu seçilime dair muhtemel bir açıklama; androstenon kokusunu algılamadaki eksiklik domuzların atalarımız tarafından evcileştirilmiş olması olabilir — androstenon yaban domuzlarından elde edilen etin kötü kokmasına sebep olur.–  Domuzlar ilk olarak; androstenona dair hassaslıkta azalmaya yol açan genlerin yüksek frekansta olduğu yer olan Asya’da evcilleştirilmiştir.

Chemical Senses ‘da yayımlanan çalışmanın araştırmacıları; aynı zamanda soyu tükenmiş olan 2 insan populasyonunda bulunan antik DNA’nın sahip olduğu OR7D4 reseptöründen sorumlu gen üzerinde de çalışmalar yaptılar. Bu iki populasyon ise; Sibirya’da aynı bölgede kalıntıları bulunan fakat onbinlerce yıl boyunca birbirlerinden ayrı yaşayan Neandertaller ve Denisova insanları idi.

Ekip; Neandertal OR7D4 DNA’sının bizimkine benzer olduğu –onlar da androstenon kokusunu alabiliyorlardı– bulgusuna ulaştılar. Denisovalar ise yok olmuş akrabalarımızın gizemli bir grubudur. Tam olarak neye benzediklerini bilmiyoruz ve onlar hakkındaki bilgimiz ise farklı bireylerine ait bir parmak kemiğine ve bir dişe ait verilerden oluşuyor. Denisovan DNA’sı, OR7D4 reseptörünün yapısını değiştiren benzersiz –insanlarda ya da Neandertaller de görülmeyen– bir mutasyon olduğuna işaret ediyor.

Amerika’daki Duke University’den ekip üyesi Hiroaki Matsunami; Denisovan OR7D4’ünü yeniden oluşturdu ve uzun zaman önce yok olan burnun bu küçük parçasının androstenona nasıl tepki verdiği üzerine çalıştı. Çalışmalar neticesinde mutasyona rağmen Denisovan burnunun bizimki gibi işlev gördüğünü ortaya çıkarıldı. Tıpkı ilk insan atalarımız gibi yakın akrabalarımızın ikisinin de bu garip kokuyu saptayabilmeleri mümkündü.

Bu araştırma; genlerimiz üzerine yapılan küresel çalışmaların, farklı besinlerdeki tadın; koku alma yetimizdeki çeşitlilikten etkilenmiş olabileceğine dair bir kavrayış geliştirilebileceğini ve uzak evrimsel geçmişe bakabilmenin ve uzak atalarımızın duyu dünyalarının yeniden oluşturulabilmesinin mümkünlüğünü gösteriyor.


Araştırma Referansı: K. C. Hoover, O. Gokcumen, Z. Qureshy, E. Bruguera, A. Savangsuksa, M. Cobb, H. Matsunami. Global Survey of Variation in a Human Olfactory Receptor Gene Reveals Signatures of Non-Neutral Evolution. Chemical Senses, 2015; DOI: 10.1093/chemse/bjv030
Kaynak: Bilimfili,  Manchester University, “Researchers show how our sense of smell evolved, including in cave men”, http://www.manchester.ac.uk/discover/news/article/?id=14799

Saç Renginin Evrimi

Yalnızca esmerlerin yaşadığı bir dünya hayal edin. İnsan atalarının primatlar olarak ilk ortaya çıktıkları zaman, aslında Dünya tam olarak böyleydi.

İnsansı canlıların ilk ortaya çıktıkları kıtanın Afrika olduğu düşünülüyor. Afrika kıtası ekvator üzerinde olduğu için, bütün yıl boyunca Güneş ışınları görece dik bir açıyla düşer. Işınların görece daha dik bir açıyla düşmesinin, insanların pigmentlerinin olabildiğince koyuya evrilmesi yönünde bir etkide buldunduğu düşünülüyor.

Melanin gibi koyu pigmentler, zararlı ultraviyole ışınlarının saç ve deri üzerinden vücuda nüfuz etmesini engeller. Daha koyu renkte deri ve saç, bireyin Güneş ışınlarına karşı daha korumalı olmasını sağlar.

Primatların Afrika’da ortaya çıkmalarından sonra ise, insan ataları Dünya’nın diğer bölgerine göç etmeyebaşladıkları zaman, koyu deri ve saç rengi üzerindeki seçilim baskısı daha açık renkte derilere ve saç renginedoğru yönlendi. Yani; insan ataları bügün Batı Avrupa ve Nordik ülkeleri olarak bildiğimiz bölgeye ulaştıkları zaman, bireylerin yeterli D vitaminini Güneş ışınlarından alabilmeleri için deri ve saçları çok daha açık renge evrimleşti.

Deri ve saçtaki daha koyu renkte pigmentler, istenmeyen ve zararlı ultraviyole ışınlara karşı koruma sağlıyor. Fakat, koyu pigmentler, aynı zamanda Güneş ışığının hayatta kalmak için gerekli bileşenlerini de engelliyor. Doğrudan Güneş ışınlarına maruz kalınan ekvator ülkelerinde günlük D vitamini ihtiyacının karşılanması, dahakoyu renkli pigmentlere sahip olunsa dahi, mümkün. Fakat, ekvatorun daha kuzeyine (ya da güneyine) doğru uzak mesafelere göç eden insan ataları, yıl boyunca daha farklı açıda Güneş ışınları altında yaşamak zorunlardı. Kış aylarında gerekli öğelerin Güneş’den elde edilebilmesi için, göç eden insan atalarının gün içerisinde yalnızca birkaç saati vardı. Tabii ki, buna ek olarak, dışarı çıkmayı zorlaştıran soğuk havanın da etkisinden bahsetmek gerekiyor.

Yani, insan ataları daha soğuk iklimlere göç ettiği için, deri ve saçtaki pigmentler zayıfladılar ve yeni renk kombinasyonları oluşturdular. Saç rengi poligenik olduğundan, saç renginin nihai fenotipini kontrol eden birçok gen mevcuttur. Bu sebeple, dünyanın birçok yerinde birçok farklı renkte saça sahip insanların da görülmesi mümkün.

Deri rengi ile saç rengi bir şekilde ilişkili olmasına rağmen, aralarında doğrudan bir bağlantı yoktur. Bu sebeple, çok çeşitli kombinasyonlar da mümkün değildir.

Bu yeni renkler Dünya üzerindeki insan atalarının popülasyonlarında görülmeye başlanınca, doğal seçilimin etkisicinsel seçilime göre oldukça az olmuş gibi görünüyor. Bu konuda yapılan araştırmaların bulgularına göre; bazı sanç renkleri karşı cins tarafından daha çekici algılanıyor. Bu durumun da, Nordik bölgelerde maksimum D vitamini emilimini sağlayan az sayıda pigmentli sarı saçın yaygınlaşmasının sebebi olduğu düşünülüyor. Bu bölgede sarı saçlı bireyler görülmeye başlandığında karşı cins, koyu saçlı bireylerden çok sarı saçlıları tercih etti. Nesiller boyunca da sarı saç, daha da yaygın görülüp daha baskın bir hal aldı. Nordik bölgelerden diğer bölgelere göç eden insan ataları da diğer bölgelerden eş bulup çifleşince, saç rengi de harmanlandı.

Neandertaller’i ele alacak olursak, genellikle diğer Homo sapien akrabalarına göre daha açık renkte saça sahip olduklarını söyleyebiliriz. Ayrıca, Avrupa’da iki farklı türün gen akımı ve çiftleşmesi olduğu düşünülüyor. Büyük bir ihtimalle bu durum, daha da fazla çeşit saç renginin ortaya çıkmasına yol açmış olabilir.

 


Kaynak: Bilimfili, Heather Scoville,”Evolution of Hair Color” About.com Retrieved from http://evolution.about.com/od/humans/a/Evolution-Of-Hair-Color.htm