Göz Kırpması İle İlgili Yeni Keşif

to edgar poe odilon redon ile ilgili görsel sonucuGünde ortalama 15 ila 20 bin kez tekrarladığımız bir ‘göz kırpma’ işlemi üzerine araştırmalarını gerçekleştiren Almanya’daki University of Tübingen ‘den araştırmacılar gözlerimizi hareket ettirmekte kullandığımız yeni ve ayrı bir yol keşfetti.

Araştırmada, 11 katılımcının göz hareketlerini kornealarına bağlanmış ince kablolar ve kızılötesi video takibi ile izleyen bilim insanları, eLife’ta yayımladıkları makalede, göz kırpması ile senkronize şekilde gerçekleştirilen yeni bir göz hareketinin varlığını ortaya koydu.

Keşfedilen göz hareketi, dönen bir nesneyi izlerken çarpık hale gelen gözün yeniden normal hale gelmesine yardımcı oluyor. Tıpkı küçük hareketlerle sağa sola döndürülen bir kamerada odaklanılmak istenen nokta veya görüntüyü sabitlemeye çalışma benzeri bir işlev gören bu hareket, bilincimizin dışında gerçekleşiyor. Kırparken gözün normal haline gelmesi ve gözümüzü açtığımız andan itibaren netliğin geri gelmesi bu aktiviteyi bunca zaman farketmemiş olmamızın nedeni olarak görülüyor.

Araştırmacılardan Mohammad Khazali ise, kendileri için; çalışmada öngörülmeyen bu göz hareketinin keşfedilmesinin beklenmedik ve şaşırtıcı bir gelişme olduğunu belirtiyor. Khazali’ye göre araştırmacıların beklentisi hali hazırda bilinen bir göz hareketi tipinin göz kırpması ile senkronize olduğunu keşfetmekti.

Kısa ve anlık bir olay olsa da, göz kırpması görsel algılarımızda bir kesintiye sebep olmaktadır. Hatta öyle ki, uyanık olduğumuz zamanın yaklaşık onda birini fark etmeden gözümüz kapalı geçiririz. Göz kuruluğunu önlemek, gözü nemli tutmak ve hatta beyne sıklıkla küçük kısa molalar sağlamak gibi işlevleri olan göz kırpma aktivitesi, büyük oranda istemsiz ve refleksif bir harekettir.

Araştırmacılar, tertip ettikleri deneyler ile bu tip göz kırpmalardan biri olan burulmalı (torsional) optokinetic nystagmus (tOKN) hareketinin göz kırpması ile senkronize olup olmadığını incelemeyi planlıyordu. Hipoteze göre de, bu hareket görsel sistemde ayrıca bir kırılmaya yol açtığı için göz kırpması ile senkronize olması bu kırılma sürecini kısaltarak daha çabuk göz kası, konumu ve görüntü yenilenmesi sağlanabileceği düşünülüyordu.

Yapılan deneylerde katılımcıların dönmekte olan noktaları izlerkenki göz hareketleri takip ve kayıt edildi. Noktaları takip ederken gözleri de dönmekte olan katılımcılar, sıklıkla tOKN refleksi ile gözlerini yeniledi ve göz kaslarının mekanik limitlerini zorlamaktan bilinç dışı şekilde de olsa kaçındı. Ancak bu yenileme süreci elbette çok iyi bir biçimde işlemiyor ve gözler de gittikçe daha kısa sürelerle takip edebilir ve dönebilir hale gelerek en son noktada artık dönemeyecek kadar yoruluyor. Ne var ki bu durum da katılımcılar arasında değişkenlik gösterdi: kimi katılımcılar sekizinci dereceden dönme kalıplarını dahi takip edebilirken, üçüncü dereceden ötesini göremeyenler de mevcut.

Tüm katılımcılar için geçerli olan birşey var ki, eğer maksimum derecelerine geldi ise göz kasları göz kırpması ile yenileniyor ancak daha fazla dönemiyor. Bu da kırpma ile aynı anda gerçekleşiyor. Bilim insanları bu yeni keşfedilmiş harekete ‘göz kırpma-ilişkili yenileme hareketi (BARM) adını verdi.

Gözün en keskin görüşü, retinanın ışığa son derece duyarlı olan ince bir katmanı ‘fovea’ tarafından sağlanır ve bu yetinin odaklanılan nesnenin en yeterli ve net biçimde görüntülenebilmesi için dengelenmesi gerekmektedir.

Bu dengeleme de, göz hareketinin sıklığı ve boyutunun gözün nötr pozisyonuna göre belirlenmesi ve düzeltilmesi üzerinden gerçekleştirilir. Tüm bu aktiviteler sonunda da çevremizi olabildiğince görmemiz sağlanmış olur. Takip eden araştırmalarla gözün dönen bir nesneyi takibi sırasında da bu BARM hareketinin gerçekleştirilebildiği ve takip sırasında dahi yenilenmenin mümkün olabileceği gösterildi.


Makale Referans:

Mohammad Farhan Khazali, Joern K Pomper, Aleksandra Smilgin, Friedemann Bunjes, Peter Thier. A new motor synergy that serves the needs of oculomotor and eye lid systems while keeping the downtime of vision minimal. eLife, 2016; 5 DOI: 10.7554/eLife.16290

Orjinal makale: Bilimfili

Körlük Engellenebilecek Mi?

Körlük Engellenebilecek Mi?

Körlüğe sebep olan en önemli etmenlerden biri retinadaki fotoreseptörlerin kaybolması veya sayıca azalmasıdır. Elbette her orandaki fotoreseptör kayıpları veya bozukluklukları direkt olarak körlüğe sebep olmasa da, değişen kayıp oranlarında görme yetisinde de farklı düzeyde bozunmalar meydana gelecektir. Temel özelliği ışığı ve ışığın özelliklerini algılamak olan fotoreseptörlerin bulunduğu retina tabakası, ışık yüzünden zarara da uğrayabilmektedir. Bu hasar çoğunlukla, içinde GPCRs (G protein–coupled receptors) adı ile bilinen reseptör proteinlerin de bulunduğu bir süreç yolu ile oluşur.

Şimdi ise Çin ve Amerika’dan araştırmacılar sistem farmakolojisi yaklaşımı ile belirli ilaç kombinasyonları ile spesifik GPCRları aktive veya inhibe ederek ışık-temelli retinal hasarların önüne geçmeyi denedi. Deneylerini progresif retinal dejenerasyonu olan fareler üzerinde gerçekleştiren araştırmacılar FDA onaylı ilaçlardan fotoreseptör-koruyucu bir kombinasyon üretmeyi başardı. İlaç kombinasyonu, yine G protein ailesinden Gi/o-bağlayıcı dopamin reseptörleri D2Rve D4R proteinlerini aktive ediyor, Gs-bağlayıcı dopamin reseptörü D1R’yi ve Gq-bağlayıcı α1A-adrenerjik reseptörü inhibe ederek çalışmasını engelliyor.

Bu noktada GPCRların ne olduğunu anlamak ilaçların çalışma biçimini anlamlandırmak için oldukça önemli. G proteinine (heterotrimerik yapıdaki bu proteinler guanin nükleotidini bağlaması dolayısıyla bu isimle anılmaktadır) bağlanabilen/bağlanan reseptörler anlamına gelen GPCRlar, çok çeşitli ve bu bağ aracılığı ile hücre içinde belirli biyokimyasal, genetik, epigenetik ve her türlü moleküler etkileşimi düzenleyebilecek sinyallerin üretilmesini sağlarlar.

Ancak yukarıda da bahsi geçen ve yalnızca gözde dahi birçok örneği ile karşılaşılabilecek olan bir takım olumsuz sonuçlar da bu sinyaller aracılığı ile ortaya çıkabilmektedir. Bu sebeple, örneğin göz özelinde; körlüğe kadar varabilecek olan retinal aksaklıkların bu protein ailesinden hangileri dolayısıyla veya hangilerinin içinde bulunduğu mekanizmalar dolayısıyla ortaya çıktığının tespit edilebilmesi, uygun ilaç veya ilaç kombinasyonlarının geliştirilmesi ile çözülebilmektedir. Mevcut araştırmada da uygulanan sistem veya sistemler farmakolojisi tekniği bu tip çoklu sebebi olan /olabilecek rahatsızlıkların çözülmesini, tedavi edilebilmesini veya önlenebilmesini mümkün hale getirmektedir.

Göz için konuşacak olursak birçok görme bozukluğuna yol açan, retinal distropiler gibi birçok retina rahatsızlığına sebep olabilen fotoreseptör  bozuklukları, hatalı işlev kazanmaları veya kayıpları vb. sorunların giderilebilmesi veya önlenebilmesi birçok insan için hayati derecede büyük bir önem arz etmektedir.

Bu bağlamda yeni potansiyel terapötik yollar geliştirmek için, sinyal ağlarında (göz veya diğer tüm hücreler için genişletilebilir) değişiklikler meydana getirebilecek ilaçların geliştirilmesi veya bu çalışmada da olduğu gibi var olan ilaçların doğru kombinasyonlarının keşfedilmesi son derece önemli sonuçlar üretilmesini sağlayabilmektedir.


Makale Referans : Yu Chen, Grazyna Palczewska3, Ikuo Masuho, Songqi Gao, Hui Jin, Zhiqian Dong, Linn Gieser, Matthew J. Brooks, Philip D. Kiser, Timothy S. Kern, Kirill A. Martemyanov, Anand Swaroop, and Krzysztof Palczewski; Synergistically acting agonists and antagonists of G protein–coupled receptors prevent photoreceptor cell degeneration;
Sci. Signal. 26 Temmuz 2016, DOI: 10.1126/scisignal.aag0245 , http://stke.sciencemag.org/content/9/438/ra74.abstract

Kaynak: Bilimfili

MORÖTESİNİ GÖRMEK

Claude Monet, Nympheas, 1915 ( Kaynak: Wikipedia)

“Sonunda, resimleri artık doğru düzgün yapmak bir kenara, onları iyice bozduğumu fark ettim. Birkaç tablomu bu nedenle imha ettim.  Artık neredeyse körüm, ve bundan böyle resim yapmayı bırakmam gerekiyor. Bunu kabullenmem çok zor, ressamlık kariyerim bitiyor, ve sağlığım gözlerim harici neredeyse mükemmel!”

Yukarıdaki satırlar, empresyonist resim akımının öncüsü olan, hatta bu akıma Impression, Sunriseisimli tabloyla adını veren ünlü ressam Claude Monet‘e ait. Monet, bu satırları ölümünden 4 yıl önce, 1922 yılında, yakın dostu Marc Elder’a gönderdiği bir mektuba yazmıştı.

Monet’in görme ile ilgili sıkıntıları 1905 yılında, 65 yaşındayken başlamıştı. Renkleri kendine özgü bir şekilde kullanarak manzaradaki dokuyu keskin fırça darbeleriyle resmetmesiyle ünlü olan Monet, artık renkleri eski yoğunluğunda göremez olmuştu. Resimlerindeki mavi, beyaz ve yeşil renkler zamanla daha bulanık sarı ve mor tonlara doğru kaymaya başlamıştı. 1915 yılında, resimleri iyice bulanıklaşmaya ve donuklaşmaya başlayan Monet, parlak kırmızıları, donuk ve soluk pembeler olarak görmekten ve tüm görüşüne hakim olan sarı tonlardan şikayet ediyordu.

Katarakt (Kaynak: Wikipedia)

Monet’in bu şikayetlerinin nedeni, ileri yaşlarda oldukça sıklıkla gözlenen katarakt rahatsızlığına bağlıydı.

Katarakt, göz küresi içinde bulunan göz merceğinin kendisinin veya merceği saran zarın şeffaflığını kaybederek ışık geçirgenliğinin bozulmasına verilen isim. Çoğunlukla ileri yaşa bağlı olarak göz merceğinin yapısının bozulması sonucu ortaya çıksa da, nadiren çocuk ve bebeklerde de görülebiliyor. Opak hale gelen göz merceği, gözün içine giren ışığı engellediği için, zaman içinde hastanın görmesinin bozulmasına neden oluyor. İlk belirtisi renklerin matlaşması ve bulanık görme olan katarakt, tedavi edilmediğinde körlüğe bile neden olabiliyor.

 

Katarakt, göz merceğinin şeffaflığını kaybederek opaklaşması sonucunda ortaya çıkan bir hastalık.    (Kaynak: Yeditepe Üniversitesi web sitesi)

Merceğin saydamlığının bozularak, opak hale gelmesine neden olan pek çok faktör var. Bunların en başında uzun süreli ultraviyole ( morötesi – UV) ışınlara maruz kalmak geliyor. Hepimizin maruz kaldığı UV ışınların ana kaynağı ise Güneş, bu nedenle de kataraktlar güneş altında geçirdiğimiz süreyle paralel olarak,  ileri yaşla birlikte daha sık görülmeye başlıyorlar. UV ışınları haricinde şeker hastalığı, hipertansiyon, travma, yaşlılığa bağlı olarak lens yapısındaki bozulmalar da katarakt oluşumuna katkıda bulunabiliyor. Pilot ve astronotlar, atmosferin üst tabakalarında bizlere göre daha fazla UV ışınlarına ve  iyonize radyasyona maruz kalıyorlar, Apollo uzay projesinde görev alan 39 astronotun, 36 tanesine uzaydaki görevlerini takiben erken dönem katarakt tanısı konmuş.  Demir çelik işçileri, cam işçileri gibi yüksek ısıya maruz kalan kişilerde de normaldan daha fazla oranda katarakt görülüyor.

Katarakt, günümüzde tedavisi oldukça kolay bir hastalık. İlerlemiş cerrahi tekniklerle, gözün ön kamarasına girilerek artık görevini tam anlamıyla yerine getiremeyen opaklaşmış lens bütün olarak veya parça parça çıkarılıyor.  Çıkarılan eski lensin yerine, şeffaf yapay bir lens takılıyor.  Ortlama süresi 30 dakika gibi kısa ve başarı oranı %90’ın üzerinde olan bu girişim sayesinde hasta, ameliyatı takiben çok kısa bir sürede hastalalığından önceki net ve berrak görüşüne kavuşuyor.

Göz lensinin yaşa bağlı dejenerasyonu. Yukarıdaki lensler 79, alttakiler ise 39 yaşındaki bir hastadan alınmış. Daha yaşlı hastadan alınan lenslerin şeffaflıklarını kaybederek sarımtırak bir görüntü aldığını görebilirsiniz. (Kaynak: St. Louis Üniversitesi, Biyoloji Bölümü, William Stark Lab )

Modern katarakt ameliyatının geliştirildiği 1940’lara dek, tarih boyunca pek çok hekimin sayısız kişinin kör olmasına neden olan bu hastalığı tedavi etmeye çalışığını biliyoruz. Göz anatomisini anlamaya başlayan ve kataraktın matlaşan lense bağlı olduğunu fark eden hekimler, eski çağlarda katarakt hastalarını gözlerindeki işlevini yitiren lensi çıkartarak tedavi etmeye çalışıyorlardı. Katarakt ameliyatına ilişkin ilk kayıtlara M.Ö. 700 yıllarında, Hindistan’da rastlıyoruz. Hindistan’dan Çin’e oradan da Orta Doğu’ya geçen bu yöntemde, sivri bir iğne ile hastanın gözüne bir delik açılarak veya içi boş bir çubuk ile göze vakum uygulamak suretiyle  kataraktlı lens gözden çıkarılıyordu. Bu işlem sonucunda hastanın kataraktlı lensi çıkarılmış olsa bile, uygulanan yöntemin travmatikliği nedeniyle hastalar genelde tedaviye rağmen kör oluyorlardı.

1700’lerde katarakt ameliyatı Avrupa’da da uygulanmaya başlamıştı. İlerleyen yıllarda, gözlerindeki lens çıkarılan hastaların görmelerini bir nebze olsun düzeltmek için, çıkarılan lensin işlevini üstlenecek kalın mercekli gözlükler reçete ediliyordu. 1940 yılında, çıkarılan kataraktlı lensin yerine konacak suni lensin imal edilmesi sonucunda, katarakt hastaları da ameliyat sonrası katlanmak zorunda kaldıkları bulanık görüntü ve ağır gözlüklerden kurtudular, hastalanmadan önceki keskinlikteki görüşlerine kavuştular.

Ne yazık ki, büyük ressam Monet, bu gelişmelerden önce yaşamıştı. Katarakt tanısı aldıktan sonra, bozulan görüşüne rağmen resim yapmayı sürdürdü. Monet’in resimlerine bakarsanız, hastalığının farklı dönemlerinde, kataraktlarının olgunlaşma süreciyle paralel olarak resimlerdeki tema renklerinin yavaş yavaş değiştiğini, resimlerindeki detayının zamanla azalarak fırça darbelerinin daha kaba hale geldiğini görebilirsiniz. Bu durum, ressamın 1800’lerin sonu ile 1926’ya kadar yaptığı 250 kadar tablodan oluşan Nilüferler serisinde oldukça belirgin bir şekilde gözlenebiliyor.

Kataraktları ilerledikçe, Monet göz doktorundan göz doktoruna dolaştı. Fransız bir göz doktoru olan Charles Coutela, sol gözü için gözbebeğini büyüterek göreceli olarak biraz daha iyi görmesini sağlayan bir göz damlası önerdi. Monet, başlangıçta sonuçtan çok memnun olsa da damlanın etkisi zamanla azaldı ve sonunda 1923 yılında, 82 yaşındayken sağ gözünden katarakt ameliyatı oldu. Çağdaşı empresyonist ressam Marry Cassat‘ın katarakt ameliyatından sonra neredeyse tüm görme yetisini kaybettiğini gören Monet, iki gözünden de ameliyat olmayı reddetmiş, ve sadece tek gözünden ameliyat olmuştu.

Ameliyat sonrası, Monet’in sol gözü hala kataraktın etkisiyle mavi ve mor tonlarını pek göremezken, sağ gözü birden bire mavi tonlarına, hatta mavinin de daha ötesine kavuştu.

İnsan retinasındaki renk algılayıcı koni hücreleri, ve hassas oldukları ışık dalga boyları. S hücrelerinin kısmen morötesi (UV) spektruma kaydığına dikkat edin. ( Kaynak: galileospendulum.org)

Sağlıklı bir gözde lens ve  renkleri algılamamızı sağlayan retinamızdaki koni hücreleri, görünür ışık dediğimiz, algılayabildiğimiz ışık spektrumunu belirler. Gözümüzle algılayabildiğimiz renkler, tüm ışık tayfının oldukça küçük bir kısmını içerir. Gözlerimiz, 400 nanometre (0,0000004 metre) dalga boyundaki mor ışıkla, 700 nanometre (0,0000007 metre) dalga boyundaki kırmızı ışık arasındaki renkleri algılayabilir. İnsan gözünde, renkleri algılamamızı sağlayan üç değişik tür koni hücresi vardır: L hücresi denen ve kırmızı tonlarını içeren uzun dalga boyundaki ışığı algılayabilen hücreler, yeşil tonlarının hakim olduğu orta boylu dalgaları algılayabilen M hücreleri, ve kısa dalga boyuna sahip mavi-mor tonlarını algılayabilen S hücreleri. Bu üç tip hücreden algılanan sinyaller, beyinde bir araya getirilir ve böylece görünür ışıktaki tüm renk tonlarını görebiliriz.

Yandaki şekilde de görüldüğü üzere, aslında S hücrelerinin algıladığı ışık boyu, kısmen mor ötesi ışık spektrumuna da uzanmakta. Ancak, sağlıklı bir insan gözündeki S hücreleri morötesi ışığın bir kısmını algılayabiliyor olsa da morötesini göremez. Zira, göz lensimizdeki kristal yapı morötesi ışıklar daha gözümüzün içine girmeden onları filtre eder. Böylece göz içindeki hücrelerimiz kısmen UV ışığa hassas olmasına rağmen, etrafa baktığımızda arılar veya diğer UV dalga boyunu gören canlılar gibi bir görüntü göremeyiz.

Geçirdiği katarakt ameliyatı sonunda, Monet’in sağ gözündeki opaklaşmış lens çıkarılmıştı. Böylece, lensin UV süzme etkisi ortadan kalınca, gözündeki S hücreleri az miktarda da olsa normal insanların göremediği UV ışınları algılamaya başladı.

Bir gözü kataraktlı ve mor-mavi tonlarına neredeyse kör olan, ancak ameliyat olan diğer gözüyle morları, mavileri hatta mor ötesi tonları bile görmeye başlayan Monet, sağ ve sol gözüne ait renk algılarındaki derin fark nedeniyle, bir daha aynı anda iki gözünü kullanamadı. Ama tek gözünü kullanarak resim yapmaya devam etti. Çiçekler hala en sevdiği objelerdi, ancak artık onları daha farklı görüyordu. Pek çok kimse, nilüferlere baktığında onları beyaz renkte görür. Ancak Monet, katarakt ameliyatından sonra sağ gözüyle baktığı nilüferleri mavi-beyaz görmeye başlamıştı, ve bu çiçekleri tuvaline gördüğü tonlarda yansıttı.

Monet’in “Gül Bahçesinden Görünen Ev” tabloları. Gördüğünüz iki tablo, aynı manzaranın Monet’in iki farklı gözüyle yaptığı resimler. Soldaki resim, kataraktlı olan sol gözünü kullanarak, sağdaki resim ise katarakt ameliyatı olan sağ gözünü kullanarak yapılmış. Sağdaki resimde, Monet’in UV ışıkları görebilmesinin sonucu ortaya çıkan baskın mavi-mor tonlar dikkat çekiyor. (Kaynak: Wikipedia)

 

Yaşı daha da ilerleyen  ve sol gözündeki katarakt iyice ilerleyen Monet, artık resim yaparken iyice zorlanmaya başlamıştı. Renkleri ayırdedebilmek için boyalarını tuvaline dikkatle sıralıyor, lensi alınmış gözünü fazla gelen güneş ışığından korumak için resim yaparken geniş kenarlı panama şapkaları takıyordu. 1926 yazında, artık resim yapmaya devam edemeyeceğine karar veren Monet, üvey kızı Blanche’nin yardımıyla, stüdyosundaki beğenmediği 60 kadar tabloyu imha etti ve resim yapmayı tamamen bıraktı.

Monet, tablolarını imha ettikten birkaç ay sonra, 5 Aralık 1926 tarihinde, 86 yaşındayken hayata gözlerini yumdu. Vasiyetinde, cenazesinde hiç bir çiçek olmasını istemediğini belirtmişti:

“Beni, buranın yerlilerini gömdüğünüz gibi, basit bir törenle gömün. Tabutumun arkasından sadece akrabalarım yürüsün. Unutmayın, cenazemde ne çiçekler ne çelenkler olsun istiyorum. Böyle bir gün için, bahçemdeki bu güzel çiçeklerin koparılıp öldürülmesi günahların en büyüğü olacaktır.”

Meraklısına notlar:

Potentilla anserina çiçeğinin görünür ışık ve UV ışık fotoğrafları. UV dalga boylarını görebilen arılar bu çiçeği sağdaki gibi görüyorlar. (Kaynak: Bjorn Roslett)

  •  İnsanların pek çoğunda S hücreleri kısmen de olsa UV ışık dalga boylarına duyarlı, ancak bu hücrelerin UV ışın spektrumunun ne kadarını algıladıkları kişiden kişiye göre değişebiliyor. Artık katarakt ameliyatlarında, çıkarılan göz lensi yerine suni lens takılsa da, bazı kimseler takılan lensin de cinsine bağlı olarak zaman zaman UV spektrumu görebildiklerini ifade ediyorlar.
  • Arılar, UV spektrumunu çok iyi görebilmelerine rağmen, kırmızı tonlarını çok iyi göremiyorlar. Ancak UV’ye hassas gözleri, onların çiçekleri bizden çok daha farklı görmelerini sağlıyor.
  • İnsanlar normalde UV dalga boylarını göremezken, kimi böcekler, kuşlar, kaplumbağalar, kertenkeleler ve pek çok balık görebiliyor. Memelilerin çoğundaki göz lensi, insanlarda olduğu gibi UV dalga boylarının görülmesini engelliyor. Ancak bazı kemirgenler, geyikler ve ren geyikleri memeli olmalarına rağmen UV dalga boylarını görebilen canlılardan.
  • Katarakt oluşumunun en önemli nedeni güneşten gelen UV ışınları. Bu nedenle katarakt olmaktan korunmak için en başta gelen şey gözleri güneş ışınından korumak. Her ne kadar artık tedavisi olsa da, katarakttan korunmak için UV filtreli bir güneş gözlüğünü sürekli kullanmanız öneriliyor. UV filtresi olmayan güneş gözlüklerinin ise yarardan çok zararı var. Zira, gözlerinize karanlık hissi vererek göz bebeğinizin genişlemesine ve gözünüzün içine daha fazla UV ışını girmesine neden oluyorlar. Kısaca ya iyi bir güneş gözlüğü kullanın, ya da hiç kullanmayın.

 

Kaynaklar:
  1. AçıkBilim
  2. Wikipedia
  3. Color Uncovered, San Francisco Exploratorium, iPad uygulaması
  4. Monet’s Ultraviolet Eye, Carl Zimmer.
  5. Claude Monet and the Subjectivity of Color, Galileo’s Pendulum.
  6. Claude Monet and Cataract, Calgary Universtesi, Psikoloji Bölümü Web Sitesi
  7. Monet Biyografisi, Monet Art Prints Web sitesi

 

Bir Tutam Kabartma Tozu Görüşümüzü Geliştirebilir Mi ?

Bikarbonat (kabartma tozu); maden suyunun (soda) köpürmesine, hamurun kabarmasına, kokunun absorbe edilmesine sebep olur ve diş temizliği de dahil olmak üzere çeşitli şeylerin temizliğinde kullanılabilir. Vücutta ise, bikarbonat; sindirime yardımcı olur, pH’ın tamponlanmasında önemli role sahiptir ve fiziksel gayret sırasında üretilen laktik asiti nötrleştirir. Vücudumuzdaki bikarbonatın çoğu bütün hücrelerde atık olarak üretilenkarbondioksitten kaynaklanır. Bunun yanı sıra, tükettiğimiz karbonatlı içecekler ve bazı karbonat içeren besinler de bikarbonat kaynağıdır.

Journal of Biological Chemistry ‘de yayınlanan Harvard University ve Salus University’nin yaptığı ortak çalışmada, araştırmacılar, bikarbonatın; ışığı saptayan koni ve çubuk fotoreseptörleri tarafından oluşturulan görsel sinyalleri düzenlememizi nasıl değiştirdiğini tanımladılar.

Koni ve çubuk fotoreseptörleri bünyesindeki cGMP isimli küçük çözülebilir bir molekül; foton alımını fotoreseptörün elektrik aktivitesine bağlıyor. Işıkta, cGMP bozulmuş haldedir ve iyon kanalları kapalıdır. Pozitif yüklü sodyum iyonlarının çubuk ve konilere girişi durur ve zar, daha negatif ya da hiperpolarize hale gelir. Bikarbonat ise; direkt olarak cGMP sentezinden sorumlu guanilat sikraz enzimini uyarır.

Harvard University ‘den makale yazarlarından Clint Makino:

“Işığın etkisinin tersine çevrilmesiyle, bikarbonat; foton tepki büyüklüğünü sınırlandırır ve toparlanmasını hızlandırır. Sonuç olarak da; ışığa duyarlılık biraz azalır ancak hareket eden objeleri takip edebilme yetisi gelişir. Asıl şaşırtıcı olan ise; –elbette ki doğrulamak için daha fazla araştırmaya ihtiyaç var ancak– görüş, metabolik düzeyde değişebilir. Bazı retinal hastalıklarda, genetik bozukluk; konilerde ve/veya çubuklardaki cGMP ‘nin ölümcül düzeyde anormal seviyelere yükselmesine sebep oluyor. Bir kez kaybedildiğinde de koni ve çubuklar yenilenemez, bu yüzden de geri dönüşü olmayan körlük trajik son olur” diyor.

İlerleyen zamanlarda, bilimciler; gözdeki bikarbonat seviyesini kontrol ederek göz hastalıklarının gelişimini yavaşlatma ya da tamamen engelleyebilme olanaklarını araştırmayı planlıyorlar.


Makale Referansı: Bicarbonate Modulates Photoreceptor Guanylate Cyclase (ROS-GC) Catalytic Activity, J. Biol. Chem. published March 12, 2015 as DOI: 10.1074/jbc.M115.650408

Kaynak:

  • Bilimfili,
  • “A pinch of baking soda for better vision?”, http://phys.org/news/2015-03-soda-vision.html