Hafıza, Hücrelerde Depolanıyor Olabilir Mi?

Hafıza bir kere yitirilirse geri kazanılabilir mi? Birçok araştırma ve araştırmacı bu soruya “evet” cevabını veriyor. eLife dergisinde yayınlanan bir araştırmaya göre bunun sırrı hücrenin çekirdeğinde saklı. Araştırmaya göre yeni anılar oluşturmak da mümkün.

Sinir bilimciler arasında kabul edilen teoriye göre hafıza iki sinir hücresi arasındaki sinapslarda (sinir hücreleri arasındaki boşluğun adı) tutuluyor. Eğer sinir hücrelerine veya sinapslara zarar gelirse de hafıza kaybediliyor.
Yeni haber ise California Üniversitesi’nde deniz salyangozları ile çalışan bir grup araştırmacıdan geldi. Ekip deniz salyangozlarından elde ettikleri sinir hücrelerine serotonin vererek, yeni sinapslar kurmalarını sağladı. Ayrıca bu yöntem, salyangozların uzun süreli hafızayı oluşturmasının doğal yoluydu. Ardından hafıza oluşumuna katkıda bulunduğu düşünülen enzimin işleyişini durduran bilim insanları sinir hücrelerini 48 saat sonra inceledi ve sinaps sayısının başlangıç ile aynı olduğu gördü. Şaşırtıcı olan ise, oluşan sinapslardan bazılarının baştakinden farklı olması, yani yeni oluşmuş olmalarıydı. Yani başlangıçtaki sinaps sayısını önceki sinapslar ve yeni oluşan sinapslar oluşturuyordu.
Şaşırtıcı çünkü, araştırma yeni bir hipotezi ortaya atıyor: Sinir hücreleri, kaç tane sinaps oluşturmaları gerektiğini biliyor! Ayrıca ekip, yaşayan bir deniz salyangozu üzerinde benzer bir deney yaparak, canlının uzun süreli hafızasını yok edip tekrar, çok ufak bir müdahale ile, oluşturmayı başardı. 
UCLA’dan nörolog David Glanzman sinapsları konser veren bir piyanistin parmaklarına benzetiyor. Eğer Chopin parmaklarını kaybetseydi bile, bestelerinin nasıl çalınacağını bilirdi. Glanzman fikrin radikal olduğunu ve asla reddedemeyeceğini söylüyor ve ekliyor, “Hafıza sinapslarda saklanmıyor!”
SUNY Downstate Tıp Merkezi’nden nörolog Todd Sactor da sonuçların ilginç olduğunu söylüyor, eski tahminlerin hafızanın sinapslarda saklandığını söylediğini hatırlatıyor. Diğer hafıza uzmanları araştırmaya ilgi duyuyor ancak sonuçlara şüpheyle yaklaşıyorlar. Hücreler kaç tane sinaps kurmaları gerektiğini biliyor olabilirler ancak hangi sinapsı nerede kuracaklarını ve hangisini daha sağlam kuracaklarını nasıl bilebildikleri pek net değil.
Kaynak:
  • Scientific American
  • Shanping Chen, Diancai Cai, Kaycey Pearce, Philip Y-W Sun, Adam C Roberts, and David L Glanzman Reinstatement of long-term memory following erasure of its behavioral and synaptic expression in Aplysia eLife. 2014; 3: e03896.Published online 2014 Nov 17.  doi:  10.7554/eLife.03896

Hücreleri Akustik Olarak Ayırabilen Bir Sistem Geliştirdi

Massachusetts Teknoloji Enstitüsü’ndeki (MIT) araştırmacılar, hücreleri ayırmak için mikroakışkan kanalları ve akustik özellikleri kullanan bir cihaz geliştirdiler. Hücre boyutu, şekli veya elektriksel özelliklerine dayanan geleneksel yöntemlerin aksine, bu yeni yaklaşım hücrelerin ses dalgaları ile etkileşiminden yararlanarak yoğunluk ve sıkıştırılabilirlik temelinde ayrılmalarını sağlıyor.

Bu yöntem çeşitli avantajlar sunmaktadır:

  • Hücre şeklinden bağımsızlık**: Akustik özellikler hücrenin şeklinden ziyade iç içeriğine bağlı olduğundan, benzer boyutta ancak farklı bileşimlere sahip hücreler ayırt edilebilir.
  • Kimyasal etiketlere gerek yoktur**: Geleneksel hücre ayırma teknikleri genellikle hücreleri değiştiren kimyasal işaretleyiciler gerektirir. Yeni yöntem bunu önleyerek hücrelerin doğal halini koruyor.

MIT ekibi, düşük frekanslarda çalışan bir titreşimli mikroakışkan kanal geliştirdi. Hücreler kanal boyunca hareket ettikçe akustik kuvvetlerle etkileşime girerek sıvı yoğunluğunun akustik özellikleriyle eşleştiği alanlara doğru göç etmelerine neden oluyor. İyodiksanol bileşiği kullanılarak kanal içinde bir yoğunluk gradyanı yaratıldığında, hücreler doğal olarak yoğunluklarına ve sıkıştırılabilirliklerine karşılık gelen konumlara doğru hareket eder. Kanaldaki sıvı, merkezde daha yüksek yoğunlukta ve duvarlara doğru azalan yoğunlukta bir “tümsek” oluşturur. Titreşimler bu tümseğin çökmesini önleyerek yoğunluk gradyanını sabit tutar ve hücrelerin hassas bir şekilde ayrılmasını sağlar.

Bu cihaz, monositler, lenfositler ve nötrofiller gibi farklı beyaz kan hücresi türlerini, bu hücrelerin bazılarının boyutları birbirine çok yakın olsa bile, başarılı bir şekilde ayırt eder. Ayrıca, bir hastanın kanındaki tümör hücreleri arasında ayrım yapma potansiyeli de göstermektedir; bu da kanser ilerlemesini izlemek için yararlı olabilir.

Cihaz, şu anda laboratuvar bazlı işlem gerektiren tam kan sayımı (CBC) gibi hızlı ve uygun maliyetli hücre analizi için bir el aleti olarak geliştirilebilir. Nature Communications’da** 16 Mayıs’ta yayınlanan çalışma, bu teknolojinin sadece kan analizi için değil, aynı zamanda kanser ve diğer tıbbi uygulamaların takibi için de potansiyelini ortaya koyuyor.

İleri Okuma
  1. Ding, X., Li, P., Lin, S. C. S., Stratton, Z. S., Nama, N., Guo, F., & Huang, T. J. (2013). “Surface acoustic wave microfluidics.Lab on a Chip, 13(18), 3626-3649. doi:10.1039/C3LC50361E.
  2. Burak Dura, Stephanie K. Dougan, Marta Barisa, Melanie M. Hoehl, Catherine T. Lo, Hidde L. Ploegh & Joel Voldman Profiling lymphocyte interactions at the single-cell level by microfluidic cell pairing Nature Communications 6, Article number: 5940 doi:10.1038/ncomms6940 Received 18 September 2014 Accepted 24 November 2014 Published 13 January 2015
  3. Nawaz, A. A., Zhang, X., Khademhosseini, A., & Voldman, J. (2023). “Acoustic separation of cells based on density and compressibility.” Nature Communications, 14, Article 1276. doi:10.1038/s41467-023-01476-w.
  4. Augustsson, P., & Laurell, T. (2012). “Acoustophoresis: Using ultrasound to handle cells and particles.” Annual Review of Analytical Chemistry, 5, 491-521. doi:10.1146/annurev-anchem-062011-143026.
  5. Collins, D. J., Neild, A., & Ai, Y. (2015). “The potential of acoustic microfluidics for particle and cell manipulation in diagnostic applications.” Lab on a Chip, 15(12), 2327-2340. doi:10.1039/C5LC00263C.

Ebeveynlerin Yaşadığı Çevrenin Çocuğun DNA’sını Nasıl Etkilediğine İlk Delil !

Kim olduğunuzu belirleyen yalnızca DNA’nız değildir, bulunduğunuz çevre de önemli bir role sahiptir. Yaşam biçimi, örneğin; stres ve beslenme biçimi gibi faktörler genlerinizin ifadesini değiştirebilir. Bu oldukça bilinir bir gerçek iken, bu değişimlerin gelecek nesillere nasıl aktarıldığı bilim insanlarının kafasını karıştırıyordu. Ve nihayet;Cell dergisinde yayımlanan yeni bir çalışma nelerin olduğuna dair bir kavrayış geliştirdi.

Embriyonun gelişiminde sperm ve yumurta hücrelerindeki bu değişimlerin silinmesine rağmen, bilim insanları DNA’nın bazı uzantılarının modifikasyonların sürmesine ve böylece de kalıtsal hale gelmelerine olanak tanıyarak bu yeniden programlamaya direndiğini ortaya çıkardı. Asıl önemlisi de, araştırmacılar; direnen genlerin bazılarının; içlerinde obezite ve şizofreni gibi hastalıkların da bulunduğu belirli hastalıklarla ilişkili oldukları bulgusuna ulaştılar.

DNA bir organizmayı oluşturmaya yetecek kadar kodlar içerirken, bütün genlerimiz aynı anda ya da aynı yerde aktif olmak durumunda değildir. Tam da bu noktada epigenetik devreye giriyor; DNA’daki bu modifikasyonlar; asıl DNA diziliminde bir değişiklik meydana getirmeden hangi genin aktif ya da inaktif olacağını değiştiriyor. Örneğin, metil grup olarak tanımlanan bir kimyasal grubu eklendiğinde veya çıktığında, DNA’ya onu okumak üzere görevli sistemlerin ulaşmasını engelleyerek genleri inaktive eder.

DNA metilasyonunun bu süreci yaşamımız boyunca devam eder, fakat bu durum çevremizdeki faktörlere bir tepki olarak da meydana gelebilir. Örneğin; açlık gibi stres oluşturan sıkıntılar metilasyon biçimini değiştirebilir, ve hamileliği sürecinde uzun süre açlık periyotları çeken annelerin kız çocuklarında şizofreni riskinde bir artış olduğu bulunmuştu. Fakat bununla da bitmiyor, laboratuvar koşullarında strese maruz bırakılan farelerin iki nesildeprese (keyifsiz) yavrular oluşturduğu görüldü.

Gözlemler kafaları karıştırdı, çünkü epigenetik verilerin sperm ve yumurta hücrelerini büyüten üreme hücrelerinde silindiği düşünülüyordu böylece de yavruya zarar verebilecek herhangi bir anormal metilasyonengellenecekti. Ortadaki bu gizemi çözmek adına, University of Cambridge‘den araştırmacılar; bu süreci, fare embriyolarının gelişiminde incelediler. Özellikle de embriyonun üreme hücrelerinde hayvanın yavru üretmesine sebebiyet veren şeylere odaklandılar.

Araştırmacılar; üreme hücrelerinin yeniden programlanma sürecinin yaklaşık yedi haftalık bir periyotta meydana geldiği bulgusuna ulaştılar. Bu aralık fazı, epigenetik değişimleri kolaylaştıran ya da sürdüren enzimlerin işlevselliğini engelleyen baskılayıcı bir ağın başlangıcını içeriyor. Ancak, araştırmacılar genomun (toplam gen) yaklaşık %5’inin yeniden programlamaya direndiği bulgusuna ulaştılar. Bu da şu anlama geliyor; bu bölgelerde meydana gelen herhangi bir metilasyon çıkarılamıyor ve böylece de gelecek nesilleri engelleme potansiyeliyle varlığını sürdürüyor.

Yakından bir inceleme üzerine, araştırmacılar bu direngen bölgelerin bazılarının, diyabet, obezite ve şizofreniyiiçeren belirli hastalıklarla ilgili olduğunu ortaya çıkardılar. Bu yeniden programlamadan “kurtulma”, çevresel faktörlerin bireyin yalnızca kendi sağlığı üzerinde etkisi olmadığını aynı zamanda gelecek nesilleri üzerinde de etkili olduğunu izah edebilmede yardımcı olabilir.


Araştırma Doi Numarası:  Ferdinand von Meyenn, Wolf Reik Forget the Parents: Epigenetic Reprogramming in Human Germ Cells Cell Volume 161, Issue 6, p1248–1251, 4 June 2015 DOI: http://dx.doi.org/10.1016/j.cell.2015.05.039
Kaynak:

  1. Bilimfili,
  2. Helen Thomson, “First evidence of how parents’ lives could change children’s DNA”, http://www.newscientist.com/article/dn27658-first-evidence-of-how-parents-lives-could-change-childrens-dna.html#.VYm-gvntmkr

3D Yazıcı ile Vücut Parçaları Üretilebilecek

Üç boyutlu yazıcıdan (3D Printer) taze çıkmış bu kulağın dış kıvrımları ve kesitleri kompleks görülebilir ancak içindeki yapı ve sistemle karşılaştırıldığında basit bile kalabilir. Kulağı yapan ‘Entegre doku-organ yazıcısı’ adı ile bilinen ITOP (integrated tissue-organ printer ) 3D yazıcı sistemi, canlı hücreleri kullanarak yapay vücut parçaları işlemeyi sağlıyor.

Araştırmanın üretim ve test aşamaları tüm detayları ile Nature Biotechnology’de yayımlandı. Araştırmacılar daha önceden de canlı hücreler kullanarak yazıcı çıktıları üretmeyi başarmıştı, ancak bu çalışmaya kadar jelatinimsi küçük canlı materyal parçalarından fazlası üretilememişti.

Bu zorluğun ise iki temel sebebi var; birincisi canlı parçalar büyüdükçe parçalanmaya daha müsait oluyorlar çünkü birbirlerine tutunmalarını sağlayan moleküler organizasyondan mahrum olabiliyorlar. İkincisi ise daha iç kısımlarda veya yüzeyden uzak kısımlarda kalan hücrelerin oksijen yetersizliğinden ölmesi veya sağlıklı biçimde yaşamına devam edememesi sorunudur. ITOP sistemi ise, bugünkü bilinen yaşamsal boyutlarda, üstelik hücrelerin bir arada sağlıklı şekilde yaşayabildiği vücut parçalarının üretilmesini sağlıyor.

Sistem ilk olarak, yapısal destek sağlayabilecek sertlikte bir madde ile hücre-dostu (hücre sağlığına zararsız) bir hidrojel (su bazlı jelimsi) yapışkanı birbirine karıştırıyor. Daha sonra bu yapay dokunun içinde oksijen kanalı olarak işleyecek boşluklar bırakıyor, böylelikle yüzeyden uzak kalan hücreler de oksijen yetmezliğinden ölüme terk edilmemiş oluyor.

Araştırmacılar ITOP ile üretilmiş olan kemik, kas ve kıkırdak dokuyu farelere ve sıçanlara implant ettiklerinde, yazıcı ürünü bu materyallerin kan tedariği aldıklarını ve iç yapılarının doğal dokuya benzemeye başladığını gözlemlediler.

Keşfi gerçekleştiren bilim insanları şimdi FDA (Food and Drug Administration) ile işbirliği içinde insan deneylerine başlamayı hedefliyor. Bununla amaçlanan şey ise, ihtiyacı olan insanlara ihtiyaç duydukları vücut kısımlarını sağlıklı şekilde sağlamak ve hatta belki değiştirmek.

 


Kaynak :

  1. Bilimfili,
  2. Hyun-Wook Kang, Sang Jin Lee, In Kap Ko, Carlos Kengla, James J Yoo & Anthony Atala A 3D bioprinting system to produce human-scale tissue constructs with structural integrity Nature Biotechnology (2016) doi:10.1038/nbt.3413 Received 27 July 2015 Accepted 19 October 2015 Published online 15 February 2016

Beyin Gelişiminde Temel Aç/Kapa Mekanizması Keşfedildi

Mainz’daki Institute of Molecular Biology (IMB -Moleküler Biyoloji Enstitüsü) bilimcileri beyin hücrelerinin oluşumunu yürüten tek bir genin karmaşık düzenlenme (regülasyon) mekanizmasını çözümledi ve ortaya çıkardı. Araştırma The EMBO Journal‘de yayımlandı ve beyin gelişiminin anlaşılması yönünde büyük bir adım daha atılmış oldu.

Nörodejeneratif hastalıklar (Parkinson vb. ) genellikle nöronların (beyindeki sinir hücrelerinin) geri döndürülemez kaybı olarak karakterize edilmektedir. Vücutta bulunan diğer hücre tiplerinden farklı olarak, nöronlar genellikle kendilerini yenileyemezler. Yani eğer beyin bir kez zarar gördüyse, öyle kalır. Benzer hasarları tedavi etmeyi sağlayacak yöntemlerin keşfi için tek umut da, beyin gelişimini anlamak ve süreci taklit etmeyi başarabilmek olacaktır. Ne var ki, beyin vücuttaki en karmaşık organlardan birisidir ve gelişimine öncülük eden moleküler mekanizmaları ile ilgili de çok az şey bilinmektedir.

Johannes Gutenberg University Mainz’daki Institute of Molecular Biology’den Dr. Vijay Tiwari’nin öncülük ettiği araştırma ekibi bir süredir beyin gelişiminde görev alan temel bir geni araştırıyordu,  NeuroD1. Bu gen gelişmekte olan beyinde ekspres edilir ve nörogenez (sinir hücrelerinin oluşumu) başlangıcına işaret eder.

Araştırmanın makalesinde, Tiwari ve ekip arkadaşları NeuroD1’in yalnızca beyin kök hücrelerinde ekspres edilmekle kalmaz aynı zamanda bu hücrelerin nörona dönüşmesini sağlayan çok sayıda genin temel regülatörü (düzenleyici) olarak rol oynar. Nörobiyoloji, epigenetik ve yazılımsal biyoloji yaklaşımları bir araya getirilerek gelişim sırasında bu çok sayıda genin ‘kapalı’ durumda olduğu saptandı. Ancak NeuroD1 aktivitesi bu genlerin epigenetik statülerini değiştirerek onları ‘açık’ konuma getirir.

Çarpıcı bir sonuç olarak bu genlerin NeuroD1 ortadan kalktıktan sonra dahi (sonraki ekspres edilmediği süreçlerde de) açık konumda kaldıkları tespit edildi. Bunun sebebi ise daha sonraki deneylerde, NeuroD1 aktivitesinin epigenetik etkilerinin bu genler üzerinde kalıcı etkiler bırakması olarak saptandı. Ekip bu fenomeni kısaca nöron gelişimini sağlayan ‘epigenetik hafıza’ olarak tanımlıyor.

Araştırmanın önemi ise, tek bir faktör olarak NeuroD1’in hücrenin epigenetik manzarasını etkileme ve değiştirme yeteneğinin/kapasitesinin ortaya çıkması olarak görülüyor. Bu epigenetik etki de aynı zamanda nöronların jenerasyonunu (üretilmesini veya oluşumunu) yürüten temel etken olarak karşımıza çıkıyor.

Dr. Tiwari bulguların uygulama alanları ile ilgili : ” Bu; DNA dizileri, epigenetik değişimler ve hücre gelişimi ilişkisinin anlaşılması yönünde atılmış önemli bir adımdır. Araştırma yalnızca embriyonik gelişim sırasındaki beyin oluşumunu aydınlatmakla kalmıyor aynı zamanda rejeneratif terapilerin keşfedilmesi yönünde yeni yolların açılmasını da sağlıyor” açıklamasında bulundu.

 


Kaynak :  Bilimfili, A. Glahs, R. P. Zinzen. Putting chromatin in its place: the pioneer factor NeuroD1 modulates chromatin state to drive cell fate decisions. The EMBO Journal, 2015; DOI: 10.15252/embj.201593324

Kronik İnflamasyon ile Göz Hücrelerinin Deriye Dönüşümü

EPFL (Ecole Polytechnique Fédérale de Lausanne – İsviçre)’den araştırmacılar kronik inflamasyon (iltihap, yangı) sebebiyle kök hücrelerin yeni (o bölge veya doku için) ve anormal hücre tiplerine dönüşebildiğini keşfetti. Metaplazi olarak bilinen bu fenomen, uzun süreli veya sürekli inflamasyon durumunda hastalık biçiminde kendini gösterebiliyor. Araştırma ile ortaya çıkan sonuçlar, daha yararlı ve verimli tedavi yöntemlerin geliştirilmesinin önünü açabilir.

Kronik inflamasyon, bağışıklık sistemini uzun süreler boyunca ‘açık’ veya ‘aktif’ konumda tutabilir. Bunun sonucunda da kanserden anormal yara iyileşmelerine kadar sayısız hastalığa sebep olabilmektedir. EPFL’den bilim insanları da bu listeye yeni bir sorunu keşfederek ekleme yaptı : kronik inflamasyon hücre tipini değiştirebilir; bu araştırma için göz hücreleri deri hücrelerine dönüştü. Araştırma tüm ayrıntıları ile Nature Cell Biology’de yayımlandı.

Birçok doku kendisi için bir kök hücre yatağı veya başka bir deyişle kaynağı bulundurur. Bu kök hücreler yeniden yapılanma, iyleşme, kendini iyileştirme gibi süreçlerde aktif olarak kullanılır. Bununla ilişkili olarak kronik inflamasyon durumunda ne olduğunu anlamak için EPFL’nin deneysel kanser araştırmaları merkezi olan enstitüsü Swiss Institute for Experimental Cancer Research (ISREC)’den Freddy Radtke önderliğindeki bir araştırma ekibi, farelerin korneasındaki kök hücreler üzerinde çalıştı. Bunun için de kronik inflamasyonu simüle edecek metotlar kullanılarak, flüoresan boyalar ile boyanan hücrelerden elde edilen verileri analiz edildi.

Araştırmacılar, korneada kök hücrelerin yakın çevresinin (komşu doku parçaları ve hücrelerin) katılaşarak sertliğin arttığını keşfetti. Bunun sebebi ise hem bağışıklık hücrelerinin varlığı hem de hücrelerin birbirine tutunmalarını ve yapıları, organları oluşturmalarını sağlayan madde miktarının artışı olarak kaydedildi.

Göz Hücreleri Deri Hücrelerine Dönüşüyor

Kornea kök hücreleri, diğer birçok hücre tipi gibi çevrelerindeki dokunun veya diğer hücrelerin sertliğini algılayabilecek ve kendisini buna uygun şekilde adapte edebilmesini sağlayan sensörlere sahiptir. Lafın kısası, eğer sertlikte değişme olursa hücreler buna tepki verir. Korneada ise araştırmacıların bulgularına göre; hücrelerin çevresinde sertliğin seviyesi bu kök hücrelerin farklı ve hatta yanlış yönde farklılaşarak olmamaları gereken hücre tiplerine dönüşmelerine sebep oluyor : normalde hücrelerin genetik yazılımları onların hangi hücre grubunu oluşturacaklarını veya bireysel olarak hangi hücre tipine dönüşeceklerini belirler.

Canlı yaşamındaki sınırsız sayıdaki eksik ve hatadan birisi olarak kök hücreler bu bölgede bölünerek kornea yerine deri hücrelerini oluşturuyorlar ve bu duruma maruz kalan farelerin kör olmasına sebep oluyor. İnsanlarda ise bu tip anormal doku değişimlerine ‘metaplazi’ denmektedir ve kronik inflamasyon ile ilişkilendirilmektedir. Radtke’nin açıklaması ise şöyle : “Çalışmamız, kronik inflamasyonun anormal kök hücre davranışlarını tetiklemesi ile ilgili önemli bir mekanizmayı ortaya çıkarıyor. Bu durum da kronik inflamasyon ile ilişkisi olan birçok hastalık açısından büyük tutarlılık gösteriyor. Yine buradan yola çıkarak yeni tedavi ve ilaçlar geliştirmek de mümkün.”


Kaynak :  Bilimfili, Craig S. Nowell, Pascal D. Odermatt, Luca Azzolin, Sylke Hohnel, Erwin F. Wagner, Georg E. Fantner, Matthias P. Lutolf, Yann Barrandon, Stefano Piccolo, Freddy Radtke. Chronic inflammation imposes aberrant cell fate in regenerating epithelia through mechanotransduction. Nature Cell Biology, 2015; DOI:10.1038/ncb3290

Biyokimyacılar Hücresel Hafıza Mekanizmasının Yapısını Çözmeyi Başardı

Kalsiyum, düşünceyi, hareketi ve diğer vücut fonksiyonlarını kontrol eden önemli bir vücut elementidir. Bu olaylar,iyon kanalları denilen, kalsiyum iyonlarının hücreye giriş-çıkışına ve hücre bölümleri arasında akışına izin verenözelleşmiş proteinler tarafından yönetilir. Yıllardır bilim insanları kalsiyum iyon kanallarının nasıl çalıştığından emin olamıyorlardı.

biyokimyacilar-hucresel-hafiza-mekanizmasinin-yapisini-cozmeyi-basardi-1-bilimfilicomKalsiyumun eşik bekçisi IP3R‘nin yapısınınatomik ölçekteki yeni görüntüleri, bu gizemi çözmek için yeni bir adım olabilir ve kanal bozukluklarıyla alakalı pek çok hastalığın tedavisine olanak sağlayabilir.

IP3R kanalı, Houston’daki Texas Tıp Merkezi Üniversitesi (UTHealth), Biyokimya ve Moleküler Biyoloji Bölümü’ndeki bilim insanları tarafından görüntülendi. Bulguları, Nature dergisinde yayımlandı.

UTHealth Tıp Fakültesi’nde biyokimya ve moleküler biyoloji doçenti olan ve çalışmanın yürütücüsü Irina Serysheva şunları söyledi: “Artık IP3R’nin eşik mekanizmasının yapısını biliyoruz. Bu çalışma pek çok fonksiyonel ve çevrimsel çalışmaya ivme kazandıracak ve yeni ilaç tasarım alanlarına olanak sağlayacak.”

IP3R kalsiyum kanalı sinyal aldığında, kalsiyum iyonlarının hücre zarı boyunca hareketi için yollar yaratıyor. Çoğunlukla hatasız çalışmasına rağmen, işler plana uygun ilerlemediğinde ciddi sağlık sorunları meydana geliyor.

“Bu sağlık sorunları arasında Alzheimer hastalığı, Parkinson hastalığı, Huntington hastalığı, kalp büyümesi, kalp yetmezliği, kanser ve felç bulunuyor” diye aktarıyor Irina Serysheva.

Çalışmada fare beyninden alınmış IP3R kanal proteinleri kullanıldı. Araştırmacılar, kanalı atoma yakın çözünürlükte görüntülemek amacıyla, düşük sıcaklıklarda çalışan elektron mikroskobu ve bilgisayarlı yeniden yapılandırma teknikleri kullandı. Sonrasında, hücrenin içinde bulunduğu haliyle proteinin 3 boyutlu durumunu yansıtan bir model inşa ettiler.

UTHealth Tıp Fakültesi, Biyokimya ve Moleküler Biyoloji Bölümü’nde profesör ve bölüm başkanı olan Rodney Kellems, “Kanalın açılışı ve kapanışını moleküler bazda anlamak ve bu sürecin çok çeşitli içsel moleküller ve farmakolojik düzenleyiciler tarafından nasıl kontrol edildiğini anlamak için, bu kanalların 3 boyutlu yapısınıbilmek gerekiyor,” diyor.

Serysheva ise “Eğer yapıyı bilmezsek, işlevi çözemeyiz,” diye ekliyor.

 


Kaynak:

  1. Bilimfili
  2. Phys.org, “Biochemists uncover structure of cellular memory mechanism”
    < http://phys.org/news/2015-10-biochemists-uncover-cellular-memory-mechanism.html >
  3. Referans: Gating machinery of InsP3R channels revealed by electron cryomicroscopy, Nature (2015) DOI: 10.1038/nature15249< http://dx.doi.org/10.1038/nature15249 >