Elektronla Beslenen Mikropların Gizemi Çözülüyor

Elektronla Beslenen Mikropların Gizemi Çözülüyor

Geçtiğimiz yıl biyofizikçi Moh El-Naggar ve lisansüstü öğrencisi Yamini Jangir, Güney Dakota’da bulunan ve şu anda ünlü karanlık madde deneyi LUX‘a ev sahipliği yapan eski bir altın madenine indiler. Bugünlerde orayı tavaf eden pek çok bilimcinin aksine, El-Naggar ile Jangir’in orada olma nedeni atomaltı parçacık avlamak değildi. İkili madenin geçit tünelleri ağında paslanmış bir metal boru buldu. Borunun içinde kalan suyun bir kısmını sifonla çekip, bir kaba yönlendirdiler ve çeşitli elektrotlar yerleştirdiler. Şimdiye kadar çok az incelenebilmiş olan avlarını, yani saf elektrikle beslenen mikrobu, işte bu akımla cezbetmeyi umuyorlardı.

Araştırmacıların peşinde olduğu elektrik yiyen mikroplar, bilim dünyasının yeni yeni anlamaya başladığı çok daha geniş bir organizmalar sınıfına ait. Genellikle insan eli değmemiş ortamlarda yaşıyorlar: Denizlerin derinliklerindeki hava baloncuğu alanlarında, gezegen yüzeyinin derinliklerindeki zengin mineral yataklarında, okyanus tabanının birkaç santim altındaki çöküntülerde… Bu mikroplar yaşamın büyük ölçüde görmezden gelinmiş bir parçasını temsil ediyorlar. Bunun bir nedeni de, tuhaf yaşam alanlarının onları laboratuvar ortamında yetiştirmeyi aşırı zorlaştırmasından kaynaklanıyor.

Yapılan araştırmalar bu canlılardan bolca bulunduğunun da işaretini veriyor. Güney Kaliforniya sahili açıklarında bulunan Katalina Adası’na yakın deniz tabanından toplanan örnek mikroplar, şaşırtıcı bir çeşitlilik sergiliyor. Bu canlılar mineral veya metal yiyip soluyor ve elektron tüketip salıyor. El-Naggar’ın ekibi altın madeninden elde ettikleri verileri çözümlemeye devam ediyor ve şu ana kadar yaptıkları çıkarımların Katalina bulguları ile uyumlu olduğunu belirtiyorlar. Bilimciler şu ana kadar bu mikropları bulabileceklerini düşündükleri bir yerde (minerali bol, oksijeni az yerlerde) ne zaman arasalar, hep buldular.

Elektron yiyicilerin sayısı artarken, bilimciler onların nasıl işlediğini de anlamaya başladı. Bir mikrop bir parça metalden nasıl elektron koparıp yiyebilir? İşi bittiğinde de nasıl elektronu ortama geri salabilir? Geçtiğimiz yıl yayımlanan bir çalışmada, bu mikroplardan birinin elektriksel avını nasıl yakalayıp tükettiği açığa çıkarılmıştı. Henüz yayımlanmamış olan bir başka çalışma ise metal yiyicilerden bazılarının elektronları doğrudan zarlarından aktardığına işaret ediyor; ki bunun imkansız olduğu sanılıyordu.

Elektrik Yiyiciler: Bazı mikroplar sırf elektriğe dayalı bir yaşam sürebilir. Doğrudan Alım (mor mikrop): Bazı durumlarda mikrop, elektrottan bir elektronu doğrudan emebilir. Dolaylı Alım (yeşil mikrop): Diğer mikroplar elektrottan bir elektron alıp, sudan aldığı protonla çiftleyen bir enzim salgılar. Mikrop, ortaya çıkan hidrojen ile beslenir.

Taş Yiyiciler

Elektrik yemek çok acayip gibi görünse de, aslında yaşamın merkezinde elektrik akımı vardır. Tüm organizmalar enerji üretmek ve depolamak için bir elektron kaynağına gereksinim duyar. Ayrıca işleri bittiğinde bu elektronlardan kurtulabilmeleri de gerekir. Nobel ödüllü fizyolog Albert Szent-Györgyi bir keresinde bu canlıları tanımlarken şöyle demiştir: “Yaşam, dinlenecek yer arayan bir elektrondan başka bir şey değildir.”

İnsanlar ve diğer canlıların çoğu elektronlarını yiyeceklerden sağlar ve solunum yoluyla onları dışarı atar. El-Naggar ve diğer bilimcilerin yetiştirmeye çalıştığı mikroplar, “taş yiyiciler” (İng. lithoautotrophs) adı verilen bir gruba aitler. Bu canlılar demir, sülfür ve manganez gibi inorganik maddelerden enerji toplar. Doğru koşullar altında, sadece elektriğe bağlı olarak yaşayabilirler.

Bu mikropların görünüşte elektronları mideye indirebiliyor olması (“doğrudan elektron aktarımı” olarak da bilinir) çok ilgi çekici. Çünkü biyofiziğin temel kurallarını ihlal ediyor gibi görünüyor. Hücreleri çevreleyen yağlı zarlar yalıtkan görevi görerek, elektronların geçmesinin mümkün olmadığı düşünülen, elektriksel olarak nötr bir alan oluşturur. “Hiç kimse bir bakterinin hücrenin içinden bir elektron alıp, dışarı taşıyabileceğine inanmak istemedi,” diyor jeobiyolog Kenneth Nealson1.

1980’lerde Nealson ve çalışma arkadaşları, katı minerallere doğrudan elektron aktarabilen şaşırtıcı bir grup bakteri keşfetmişti. Bu işin ardında yatan moleküler mekanizma ise ancak 2006 yılında anlaşılabildi. Hücre zarında bulunan üç adet özelleşmiş protein, elektronları hücrenin dışına aktaran iletken bir köprü inşa ediyordu2. (Bilimciler elektronların zar boyunca kendi başlarına geçip geçmediklerini hala tartışıyor.)

Bu elektron bağışçılarından esinlenen bilimciler, mikropların tam tersini de yapıp yapamayacağını merak etmeye başladı. Enerji kaynağı olarak doğrudan elektron sindirebilirler miydi? Metanojen adı verilen bir mikrop grubuna odaklandılar. Metan yapmalarıyla ünlü olan bu mikropların çoğuna tam bir metal yiyici denemezdi. Fakat 2009 yılında Pennsylvania Eyalet Üniversitesi’nden çevre mühendisi Bruce Logan ve çalışma arkadaşları, ilk kez olarak bir metanojenin sadece bir elektrottan gelen enerjiyi kullanarak hayatta kalabileceğini gösterdi3. Ekip mikropların elektronları doğrudan emdiğini öne sürdü. Bunu, elektron üreticilerin elektronların hücre dışına atmak için kullandığına benzer bir köprü ile yapıyor da olabilirlerdi. Fakat doğrudan kanıt bulunamadı.

Geçtiğimiz yıl Stanford Üniversitesi’nden mikrobiyolog Alfred Spormann ve çalışma arkadaşları, Logan’ın kuramında bir açık yakaladı. Bu organizmaların elektrotlar üzerinde çıplak elektron yemeden hayatta kalabilecekleri bir yol olduğunu gösterdiler4. Spormann’ın incelediği mikrop olan Methanococcus maripaludis, elektrotun yüzeyine yapışan bir enzim salgılıyordu. Enzim, elektrottaki elektronlardan biri ile sudaki protonlardan birini çift haline getirerek, bir hidrojen atomu yaratıyordu. Metajonler arasında bu iyi bilinen bir besin kayanğıdır. “İletken bir patikaya sahip olmak yerine enzim kullanıyorlar. İletken malzemelerden bir köprü inşa etmelerine gerek kalmıyor,” diyor Minnesota Twin Cities Üniversitesi’nden mikrobiyolog Daniel Bond.

Mikroplar çıplak elektron yemiyor olmakla birlikte, sonuç yine de şaşırtıcı. Enzimlerin çoğu hücre içinde iyi çalışır ama dışarda verimi hızla düşer. “Burada alışılmadık olan, enzimlerin elektrot yüzeyinde toplandıklarındaki durağanlıkları,” diyor Spormann. Önceki deneylerde bu enzimlerin hücre dışında sadece birkaç saat aktif kalabildiklerini düşündürecek sonuçlar elde edilmişti. Fakat Spormann’ın ekibi 6 saate kadar aktif kalabildiklerini gösterdi.

Spormann ve meslektaşları yine de hala metanojenlerin ve diğer mikropların doğrudan elektrik emebileceğini düşünüyor. “Bu doğrudan elektron aktarımına alternatif olan bir mekanizma ve doğrudan elektron aktarımının yapılamayacağı anlamına gelmiyor,”diyor Cornell Üniversitesi’nden çevre mühendisi Largus Angenent. Spormann, kendi ekibinin çıplak elektron alma becerisi olan bir mikrop bulduğunu da ekliyor. Fakat henüz ayrıntıları yayımlamadılar.

Bilimciler suya elektrik akımı aktararak, mikropları çekmeye çalışıyor. (Telif: Connie A. Walter &Matt Kapust)

Mars’taki Mikroplar

Gezegendeki tüm organizmaların çok küçük bir bölümü, sadece %2 kadarı laboratuvarda yetiştirilebiliyor. Bilimciler, bu yeni yaklaşımlar (mikropları geleneksel kültür sistemleri içinde değil, elektrot üzerinde yetiştirmek) sayesinde şimdiye dek incelenemeyen mikroplar üzerinde de çalışabilmeyi umuyor. “Minerallerin yerine elektrot kullanmak, bu alanı açıp genişletmemize yardımcı oldu. Artık bakterileri yetiştirmek ve solunumlarını izleyerek fizyolojilerini görmek için bir yönteme sahibiz,” diyor Dr. Annette Rowe. Kendisinin bu konuda başarılı çalışmaları var.

2013 yılında Rowe, Kaliforniya’nın Katalina Adası’nı çevreleyen demirce zengin çöküntülerde mikrop aramaya gitmiş. Elektriksel mikropların en az 30 yeni çeşidini keşfeden Rowe, bulgularını geçen yıl yayımladı5. Bu çalışmadan önce mikropların inorganik maddelerden elektron çekebildiğini kimse bilmiyordu. Bu beklenmedik bir şeydi. Balıkçıların balıkları çekmek için farklı yemler kullanması gibi, Rowe farklı gerilimlerdeki elektrotlar kullanarak değişik mikroplar yakaladı. Ağına bir şey takıldığını akımın değişmesinden anlıyordu. Mikroplar negatif elektrottan elektron emdiğinden, metal yiyiciler negatif bir akım üretiyordu.

Rowe’un topladığı farklı bakteri türleri, değişik elektriksel koşullar altında gelişiyordu. Bu da onların elektron yemek için farklı stratejilere başvurduklarına işaret ediyor. “Her bakteri farklı enerji düzeylerinde elekton alımı gerçekleştiriyor. Bu da farklı yolların işareti olmalı diye düşünüyoruz,” diyor Rowe. Şu anda başka mikroplar için yeni ortamlarda arama yapan Rowe, asitliği düşük derin kaynaklardan gelen sıvılara yoğunlaşmış. Ayrıca El-Naggar’ın altın madeni deneyine de katkıda bulunuyor.

Mikropların katı yüzeylerle bu tür bir beslenme ilişkisi geliştirebileceğinin daha çok yeni anlaşıldığını söyleyen El-Naggar, araştırmalarının dünya üzerinde yaşamın nasıl başladığına ilişkin yanıtlar da sağlayabileceğini ifade ediyor. Yaşamın kökenine ilişkin kuramlardan birinde, mineral yüzeylerde başlamış olabileceği tahmin ediliyordu. Araştırmalar buna ilişkin kimi boşlukları doldurabilir.

Dahası, yüzeyin altındaki metal yiyiciler, başka gezegenlerdeki yaşama ilişkin de ipucu verebilir. Belki de uzaylı mikroplar gezegen yüzeyinin altında gizlidir. El-Naggar, Mars gibi uç koşullara sahip ortamlarda yaşam formları bulma olasılığının kendisini heyecanlandırdığını belirtiyor. Altın madeninde yürüttüğü deneyin finansmanını NASA’nın Astrobiyoloji Enstitüsü’nün karşıladığını da ekleyelim. Mars, demir bakımından zengin bir gezegendir ve yüzeyinin altında su akıntıları bulunuyor. “Eğer demirden elektron alabilen bir sisteminiz ve biraz suyunuz varsa, işleyen bir metabolizmaya gerekecek tüm malzemeniz var demektir,” diyor El-Naggar. Bu da Mars’ta metal yiyicilerin bulunmasının hiç de zor olmadığı anlamına geliyor.

Yamini Jangir, Moh El-Naggar’ın laboratuvarında çalıştığı dönemde Sanford Yeraltı Araştırma Tesisi’ndeki bir borudan su örneği alırken görülüyor. (Telif: Connie A. Walter &Matt Kapust)


Kaynaklar:
  • Bilimfili,
  • Quanta Magazine, “New Life Found That Lives Off Electricity”
    < https://www.quantamagazine.org/20160621-electron-eating-microbes-found-in-odd-places/ >
  • Quanta Magazine, “How to Grow Metal-Eating Microbes”
    < https://www.quantamagazine.org/20160621-how-to-grow-metal-eating-microbes/ >

Notlar:
[1] 

Click here to display content from YouTube.
Learn more in YouTube’s privacy policy.


[2] Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11358-63. Epub 2006 Jul 18.
[3] Cheng S, Xing D, Call DF, Logan BE. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol. 2009 May 15;43(10):3953-8.
[4] Deutzmann JS, Sahin M, Spormann AM. Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis. MBio. 2015 Apr 21;6(2). pii: e00496-15. doi: 10.1128/mBio.00496-15.
[5] Rowe AR, Chellamuthu P, Lam B, Okamoto A, Nealson KH Marine sediments microbes capable of electrode oxidation as a surrogate for lithotrophic insoluble substrate metabolism. Front Microbiol. 2015 Jan 14;5:784. doi: 10.3389/fmicb.2014.00784. eCollection 2014.

Milyonlarca Yıllık Evrimin Meyvesi : Beyin üzerine birkaç not

Picture 009

‘İnsan beyninin bu hale gelebilmesinde evrimsel süreçlerin rolü ne oldu?’ diyecek olursak bunu bir yazıda özet halinde bile ancak tek bir yönüyle inceleyebiliriz. Çünkü biyolojik evrim çok yönlü ve bu nedenle çok farklı bilim disiplinleri tarafından incelenen bir olgudur. Biz konumuz dâhilinde insan beyninin evrimine göz atalım.

Afrika, insanın evrimsel sürecinde rolü çok büyük olan bir kıta… Çünkü görünüşe bakılırsa insan evrimi açısından Afrika’da geçen süreç oldukça zengin olmuş. Burada evrimini sürdürürken, insan ve insanlar erken dönemlerinde Afrika dışına çıksa da, bu türler (Homo erectus ve neanderthalensis gibi) zamanla yok oldu[1]. Homo sapiens’in –günümüzde varlığını devam ettiren tek insan türü, yani bizler- ise yaklaşık 60 bin yıl kadar önce kadar Afrika dışına göç etti[2].

Afrika’da yapılmaya sistematik bir şekilde devam edilen –hiçbir bölge atlanmayacak şekilde sıralı ve programlı- kazılarda[3] insanın yakın dönemdeki ataları olan cinslerden çok fazla mesaj edinebiliyoruz: Gerek iskeletler, gerekse de aletler… Yapılan bu aletleri takip ederek insan beyninin gelişmesinin takip edilebileceğini düşünebiliriz. Zaten böyle düşünen bilim insanları da bu konuda çalışmalar yapmış, bu alet kullanım dönemlerini dönemlendirerek insan gelişimini incelemek istemişlerb. Alet kullanımını incelemeyen araştırmaları paleontolojik olarak yapılan kafatası incelemeleriyle pekiştirerek insan beyninin evrimi konusunda yeni bulgular bulmaya başlamışlar.

İnsansılar, 6 milyon yıl önce şempanzeler ile olan ortak atalarından, yani Hominini oymağını oluşturan soydan, Hominina alt oymak soyu oluşacak biçimde ayrıldı. Bu soydaki ortaya çıkan bazı türler sürekli iki ayak üzerinde (bipedal) hareket ve alet kullanmaya yatkın uzuvlara sahipti ki, bu durumun oluşması için şempanzeler ve Hominina’ların bu farklı özellikler için seçilimsel ve/veya nişsel farklılıklar içeriyor olması gerektiğini varsayabiliriz. Bunun yanında Hominina ve insan soyunun diyetinin farklılaşmasıyla beyin yapısı da gelişmeye devam etti. Bu gelişim et yemesi ile –son 3 milyon yıldır ise bu diyete nişasta eklenmesinin de etkili olduğu düşünülüyor[4]– oldukça hızlandı. Aynı zamanda genetik olarak yapılan çalışmalar ise primatların beyinlerinin diğer memeli soylarından daha hızlı gelişebilmesini bazı pozitif seçilimler sonucu oluşan genetik materyallere yoruyorlar[5].

Diğer türlerinkinden farklı olmayan evrimsel mekanizmalarla geçen süreçte -mutasyon, rekabet, seçilim, adaptasyon vs.- insan evrimleşerek günümüze geldi. Fakat diğer türlerden farklı olarak beyin fonksiyonları diğer türlere göre çok farklıydı. Çevreye uyumunda onu benzersiz kılan düşünsel süreçlere sahipti. Aletler yapıyor, gruplarını koordineli tutabilecek ve sosyalliğine yol açacak iletişim yolları öğreniyordu.

Genetik araştırmalar, sinir sisteminin oluşumunda beyin gelişiminde zenginleşen gen ifadelerine sebep olan gen duplikasyonlarında (bir genin ikinci bir kopyasının oluşması, çiftlenme) insana özgü olanlarını ortaya koymuş durumda. Bununla birlikte bu gen ifadelerinin sonuçlarının beyinde nasıl işlevlendiği hala bilinmiyor. Bir örnek vermek gerekirse, insana özgü olan SLIT–ROBO Rho GTPase-activating protein 2(SRGAP2) geni kortikal (beyin kabuğuna bağlı) gelişimle alakalı bir gen. Araştırmacıların iddiasına göre bu gen memeli atalarımızın genlerine antagonist (karşılıklılığı tamamlayıcı) çalışıyor. Böylece bu genin ifadesinin artması insan nöronlarındaki sinirsel iletimin girdilerin sayısını arttırarak, nöronlara (sinir hücreleri) girdi almada ve bilgi işlemede daha esnek olmalarını sağlıyor. Bu değişim bilinç, öğrenme ve hafıza üzerinde önemli bir etkiye sahip olabilir. Not düşmek gerekir ki, bu duplikasyon etkinliğinin zamanı ile insan evriminde neokorteks (beynin en dış tabakası) oluşumu ve insanın davranışlarının değişikliğe uğradığı zamanlar birbirleriyle bağlantılı.[6]

Ersin ErsözlüBeynimizi bedenimizden ayrı düşünemeyeceğimize göre; insan evriminde, türün bedeninde olan değişiklerin beynin evrimine olan etkilerine de örnek vermek gerekiyor. Beslenme biçiminin (diyet) beynin gelişiminde rol aldığını söyledik, peki ya bedenin buna verdiği tepkiler nasıl olmuştu ve bu tepkiler beynin evrimini nasıl etkiledi? Soruyu cevaplamak için diyeti şimdilik bir kenara bırakalım, insanın diğer primatlarda daha fazla yağ dokusuna sahip oluşu, deri yapısının ve oranının farklı oluşu bazı araştırmacıların hipotezine göre[7], türün kıtlık koşullarında dahi yaşamasına izin vermiştir. Kas dokusu açısından ise bonobolar en önde geliyorlar. Özellikle ağaçlara tırmanmada ve ağaçta sallanmada gerekli olan vücudun üst bölümündeki kaslar incelendiğinde, bu kasların insanın iki ayaklı hareketinin gerekliliğini oldukça azaltmış bir kas grubu olduğunu söyleyebiliriz. Bu yeni bulgular ile biliminsanları, beynin ve alet kullanmanın türü şekillendirmesinden bile önce doğal seçilimin H. Sapiens’in yumuşak dokularını –yağ, kas- şekillendirdiği görüşünde. Yumuşak dokular hakkında fosillerden bilgi alınamadığından farklı yöntemler izlenmesi gerekmiş. Bize genetik olarak en çok benzeyen cins olan Pan (bonobo ve şempanze türlerini içerir) ile yapılan araştırmada, insan ile bonoboların yumuşak dokularının karşılaştırmasına bakarak beden işlevi ve kompozisyonuna bakarak insanın evrimi üzerine yeni bir kavrayış geliştirmek amaçlanmış.[8] Bu bulguların, çalışmaya göre, Homo cinsine etkileri ise şu şekilde olmuş: Deride ter bezleri oluşması sonucu uzun süreli fiziksel kondisyon kazanmış, derideki –palmar bölgedeki- kıllarını kaybetmesiyle ise duyusal (sensöryal) kapasitesinin arttırarak çevresiyle iletişimini arttırmıştır. Aynı zamanda Homo’nun yağ oranının artmasıyla, dişinin gebelik döneminde plasentasında gelişen emriyonun daha büyük beyin geliştirebilme kapasitesine sahip olması sağlanmıştır.[9]

Başka bir tartışma da beynin yapısını oluşturan nöronlar üzerine yapılabilir. Beyin, böbrek ve kas dokusundaki beş binden fazla lipidi (yağ molekülü) karşılaştıran bir araştırmaya kadar insan beyninin lipit yapısının diğer memeli türlerinden farklı olduğu bilinmiyordu. Lipitler özellikle beyinde oldukça işlevsel çünkü hücre zarının lipit yapısında olduğu ve hücresel iletimi hücre zarının gerçekleştirdiğini biliyoruz. demiştik yazının başında. Araştırmacılar insan ve şempanze soylarının 6 milyon yıl önce ortak bir atadan ayrılmasına dayanarak beyin yapısının farklılaşmasının bu iki türde aynı olmasını beklediler. Sonuçta ise insan beyninin ilkel (primitif) bir parçası olarak görülen beyincikdeki (Cerebellum) lipit yapıları –bu araştırmada yoğunluk incelenmiş- tüm omurgalılarda olduğu gibi bu iki türde de benzer çıktı. Fakat insan ve şempanzenin neokortekslerindeki lipit yapısının ortak ata ile karşılaştırılması sonucunda insanlarda, şempanzelerden üç kat daha fazla farklılık olduğunu gördüler.[10]

Bu mekanizmaları anlamak beynin evrimini anlamak için tek başına yeterli olmayacaktır. Atalarımızın evrimini bütünsel bir şekilde; bedenini, çevresini ve sosyal yapılarını göz önüne alırsak insan bilincini oluşturan ve geliştiren etmenleri daha iyi anlayabiliriz.

 

Yazar: Ersin Ersözlü, İTF ÇAPA, Bilimin Sesi

Düzelti ve yayına hazırlayan: Umut Can Yıldız, Boğaziçi Ü., Bilimin Sesi

 

Yazardan notlar:

a:Bir örnekle bu kazılardan güncel olan birini inceleyebileceğiniz bağlantı:http://www.theatlantic.com/science/archive/2015/09/homo-naledi-rising-star-cave-hominin/404362/

b:Bu konu yazımızın konusu dışına çıktığından daha fazla açmaya gerek yok. Fakat bu konuda ileri okuma yapmak isteyen arkadaşlar Bilim ve Gelecek Dergisi’nin Şubat 2016 sayısının kapak konusunu (Araçların Evrimi) inceleyebilirler.

* Geçtiğimiz hafta sonu ODTÜ’de yapılan 10. Aykut Kence Evrim Konferansı’da çok değerli sunumlar yapıldı. Orada, İTF Nöroloji ABD’den Hakan Gürvit hocamız ‘insan beyninin evriminde plastisite’ konulu bir sunum yaptı. Sanıyorum konferansta yapılan sunumları yakın zamanda evrimagaci.org adresinden bulabilirsiniz. İlgilenen arkadaşlara öneririm.

*Yazının konusu hakkında kapsamlı bir belgesel önerisi: http://www.youtube.com/watch?v=cgg0bhfNjo0

 

Kaynakça:

[1] https://en.wikipedia.org/wiki/Early_human_migrations

[2] https://en.wikipedia.org/wiki/Recent_African_origin_of_modern_humans

[3] http://biliminsesi.org/paleo-diyeti/

[4] http://biliminsesi.org/paleo-diyeti/

[5] http://www.nature.com/nrn/journal/v6/n2/full/nrn1620.html

[6] http://www.nature.com/nrg/journal/v13/n7/full/nrg3266.html

[7] http://www.sciencemag.org/news/2015/06/why-humans-are-fat-primate

[8] http://www.pnas.org/content/112/24/7466.full

[9] http://www.pnas.org/content/112/24/7466.full

[10] Andrea Alfano Big Role for Fat in Brain Evolution Scientific American Mind 26, 17 (2015) Published online: 11 June 2015 | doi:10.1038/scientificamericanmind0715-17