Potasyum kanalları

Potasyum kanalları, potasyum iyonlarının (K+) hücre zarları boyunca geçişine seçici olarak izin veren integral membran proteinleridir. Nöronlar, kas hücreleri ve kalp hücreleri de dahil olmak üzere hücrelerin elektriksel aktivitesinin düzenlenmesinde çok önemli bir rol oynarlar. Potasyum kanalları, dinlenme membran potansiyelinin ayarlanmasında, aksiyon potansiyellerinin şekillendirilmesinde ve hücre uyarılabilirliğinin kontrolünde rol oynar.

Yapılarına, işlevlerine ve geçit mekanizmalarına göre sınıflandırılan farklı potasyum kanalı türleri vardır. Bazı yaygın tipler arasında voltaj kapılı potasyum kanalları, içe doğru doğrultucu potasyum kanalları ve kalsiyumla aktive olan potasyum kanalları bulunur.

Potasyum kanallarının açılması ve kapanması, membran voltajındaki değişiklikler, hücre içi sinyal molekülleri ve nörotransmitterler gibi çeşitli faktörler tarafından kontrol edilir. Potasyum kanalları açıldığında, potasyum iyonları hücre dışına akarak hiperpolarizasyona ve dinlenme membran potansiyelinin geri kazanılmasına yol açar.

Potasyum kanalları kas kasılması, nöronal sinyalizasyon, hormon salgılanması ve kalp atış hızının düzenlenmesi dahil olmak üzere çok çeşitli fizyolojik süreçlerde yer alır. Potasyum kanallarının işlev bozukluğu kardiyak aritmiler, epilepsi ve kanalopatiler gibi çeşitli bozukluklara yol açabilir.

Potasyum kanallarının keşfi ve incelenmesi, hücresel fizyoloji anlayışımızı önemli ölçüde geliştirmiştir ve bu kanalları hedefleyen terapötik müdahalelerin geliştirilmesi için etkileri vardır.

Click here to display content from YouTube.
Learn more in YouTube’s privacy policy.

Biyokimyacılar Hücresel Hafıza Mekanizmasının Yapısını Çözmeyi Başardı

Kalsiyum, düşünceyi, hareketi ve diğer vücut fonksiyonlarını kontrol eden önemli bir vücut elementidir. Bu olaylar,iyon kanalları denilen, kalsiyum iyonlarının hücreye giriş-çıkışına ve hücre bölümleri arasında akışına izin verenözelleşmiş proteinler tarafından yönetilir. Yıllardır bilim insanları kalsiyum iyon kanallarının nasıl çalıştığından emin olamıyorlardı.

biyokimyacilar-hucresel-hafiza-mekanizmasinin-yapisini-cozmeyi-basardi-1-bilimfilicomKalsiyumun eşik bekçisi IP3R‘nin yapısınınatomik ölçekteki yeni görüntüleri, bu gizemi çözmek için yeni bir adım olabilir ve kanal bozukluklarıyla alakalı pek çok hastalığın tedavisine olanak sağlayabilir.

IP3R kanalı, Houston’daki Texas Tıp Merkezi Üniversitesi (UTHealth), Biyokimya ve Moleküler Biyoloji Bölümü’ndeki bilim insanları tarafından görüntülendi. Bulguları, Nature dergisinde yayımlandı.

UTHealth Tıp Fakültesi’nde biyokimya ve moleküler biyoloji doçenti olan ve çalışmanın yürütücüsü Irina Serysheva şunları söyledi: “Artık IP3R’nin eşik mekanizmasının yapısını biliyoruz. Bu çalışma pek çok fonksiyonel ve çevrimsel çalışmaya ivme kazandıracak ve yeni ilaç tasarım alanlarına olanak sağlayacak.”

IP3R kalsiyum kanalı sinyal aldığında, kalsiyum iyonlarının hücre zarı boyunca hareketi için yollar yaratıyor. Çoğunlukla hatasız çalışmasına rağmen, işler plana uygun ilerlemediğinde ciddi sağlık sorunları meydana geliyor.

“Bu sağlık sorunları arasında Alzheimer hastalığı, Parkinson hastalığı, Huntington hastalığı, kalp büyümesi, kalp yetmezliği, kanser ve felç bulunuyor” diye aktarıyor Irina Serysheva.

Çalışmada fare beyninden alınmış IP3R kanal proteinleri kullanıldı. Araştırmacılar, kanalı atoma yakın çözünürlükte görüntülemek amacıyla, düşük sıcaklıklarda çalışan elektron mikroskobu ve bilgisayarlı yeniden yapılandırma teknikleri kullandı. Sonrasında, hücrenin içinde bulunduğu haliyle proteinin 3 boyutlu durumunu yansıtan bir model inşa ettiler.

UTHealth Tıp Fakültesi, Biyokimya ve Moleküler Biyoloji Bölümü’nde profesör ve bölüm başkanı olan Rodney Kellems, “Kanalın açılışı ve kapanışını moleküler bazda anlamak ve bu sürecin çok çeşitli içsel moleküller ve farmakolojik düzenleyiciler tarafından nasıl kontrol edildiğini anlamak için, bu kanalların 3 boyutlu yapısınıbilmek gerekiyor,” diyor.

Serysheva ise “Eğer yapıyı bilmezsek, işlevi çözemeyiz,” diye ekliyor.

 


Kaynak:

  1. Bilimfili
  2. Phys.org, “Biochemists uncover structure of cellular memory mechanism”
    < http://phys.org/news/2015-10-biochemists-uncover-cellular-memory-mechanism.html >
  3. Referans: Gating machinery of InsP3R channels revealed by electron cryomicroscopy, Nature (2015) DOI: 10.1038/nature15249< http://dx.doi.org/10.1038/nature15249 >

Acı Hissetmemenin Moleküler Kökeni

Nadir görülen bir genetik mutasyon ile doğan insanlar acı hissedemiyorlar.. Uzun yıllardır bilinen bu durumu, ilaçlar ile yapay olarak elde etme çalışmaları ise çok da gözle görülür başarı gösteremedi. University of College London’dan araştırmacılarının yürüttüğü yeni bir çalışmada ise, aynı mutasyonu bulundurmak üzere genetik olarak modifiye edilmiş fareler ile acısız ağrısız bir hayatın reçetesi ortaya çıkarıldı.

Mesajların (kimyasal veya sinirsel iletinin) sinir hücreleri arasındaki aktarımını veya geçişini sağlayan ve hücre zarı üzerinde konuçlanan ‘kanallar’ sinir sistemi içerisinde elektriksel iletimin sağlanması için ciddi bir önem arz eder. 2006 yılında yayımlanan bir çalışmada bu kanallardan birisi olan Nav1.7 (bir sodyum kanalı) çoğunlukla ağrı/acı iletilen güzergahlarda bulunduğu ve bu kanalı sentezleyen geninde hasar ile doğan insanların acı hissedemedikleri gösterilmişti. Nav1.7 kanalını bloke eden veya çalışmasını durduran ilaçların ise şimdiye kadar ciddi bir etkisi gözlemlenmedi.

Nature Communications’da yayımlanan bu yeni çalışma Nav1.7’den yoksun olan hem insan hem de farelerin normalin üzerinde doğal opioid peptitler ürettiklerini ortaya koyuyor. Bu proteinler morfin veya kodein gibi sinir sistemi üzerinde analjezik etkiler gösteren proteinlerdir.

Acısızlık veya başka bir deyişle ağrı hissinden yoksun olma durumunun opioidlere bağlı olup olmadığını anlamak için araştırmacılar, Nav1.7 bulundurmayan farelere bir opioid inhibitörü (durdurucusu) olan ‘naloxene’ (naloksen) vererek, acı hissini tekrar kazandıklarını gözlemlediler. Bu deneyi takiben, aynı mutasyona sahip 39 yaşındaki bir kadına da naloksen verildi ve kadının hayatı boyunca ilk kez acı hissetmesi sağlandı.

Bugün birçok sodyum kanalı bloklayıcısı biliniyor ve bunlar lokal anestezide kullanılıyor. Ancak uzun süreli ağrı / acı kontrolünde kullanılamıyorlar çünkü bütün bir uyuşukluğa (hissizliğe) ve çeşitli cidid yan etkilere sebep olabiliyorlar. Buna karşılık Nav1.7 eksikliği ile doğan insanlar acı hissedemiyorlar ve bilinen tek yan etkisi ise koku alamamak.

Morfin gibi opioid ağrı kesiciler acı hissini düşürmekte son derece etkililer ancak uzun süreli kullanımları bağımlılık veyahut toleransın ortaya çıkmasına sebep olabilmektedir. Bunun sonucunda da artık vücudun bağışıklığı ve ilacın normal dozlarında işe yaramaması ve hatta çalışmasının tamamen durması gibi sonuçlar da oluşabilmektedir.

Profesör John Wood’un açıklamasına göre, Nav1.7 bloklayıcılarının içinde bu kanalı bloklamak için en düşük dozlarda ve miktarda ihtiyaç duyulan maddenin opioid olduğu görülüyor. Çalışmayan veya hatalı Nav1.7’ye sahip olan insanlar çok düşük seviyelerde opioidler üretiyorlar ve gözle görülür bir yan etki de tecrübe etmiyorlar veya bir tolerans geliştirmiyorlar.

Araştırmacılar ise şimdi 2017’de başlayacak insan deneyleri ile ilaç / kimyasal kombinasyonlarını ve/veya varyasyonlarını deneyerek milyonlarca acı çeken, ağrılı rahatsızlıklar duyan insana yardımcı olacak sonuçlara ulaşmayı bekliyorlar.

Araştırmanın fizyolojik deney kısmındaki bulgularından biri de modifiye farelerin sinir sistemlerinde modifiye olmayanlara nazaran  iki kat daha fazla doğal-opioidler bulundurması idi.

Transjenik (genetik olarak modifiye edilmiş) hayvan modellerinin insan hastalıkları ile ilgili olarak klinik önemlerini tekrar vurgulayan araştırma, bu durumun acısızlık için de geçerli olduğunu ömrü boyunca ağrı veya acı hissetmemiş bir insanın acıyı tecrübe setmesini sağlayacak kadar büyük uygulamalarının olabileceğini de göstermiş oldu.


Kaynak : Bilimfili, Michael S. Minett, Vanessa Pereira, Shafaq Sikandar, Ayako Matsuyama, Stéphane Lolignier, Alexandros H. Kanellopoulos, Flavia Mancini, Gian D. Iannetti, Yury D. Bogdanov, Sonia Santana-Varela, Queensta Millet, Giorgios Baskozos, Raymond MacAllister, James J. Cox, Jing Zhao, John N. Wood. Endogenous opioids contribute to insensitivity to pain in humans and mice lacking sodium channel Nav1.7. Nature Communications, 2015; 6: 8967 DOI: 10.1038/ncomms9967