Esrar içmek sizi sandığınızdan çok daha uzun süre kafayı buldurur.

Esrar kullanımının özellikle kısa vadede ciddi sonuçları olabilir. Bu yüzden esrar içtikten sonra araba kullanmamalısınız.

Tetrahidrokanabinolün (THC) etkileri bilişsel performansınız üzerinde önemli bir etkiye sahip olabilir. Esrar içtikten sonra bu durumun ne kadar sürdüğü çeşitli araştırmalarda incelenmiştir. Ancak Sydney Üniversitesi’nin Lambert Girişimi tarafından yapılan bir analiz bu soruyu kesin olarak çözmeyi amaçlıyor.

Esrar içmek: Gerçekten ne kadar süre kafayı bulduruyor?

Dr. Danielle McCartney liderliğindeki ekip yaklaşık 80 çalışmayı analiz etti. Araştırmacılar meta-analizlerini Temmuz 2022’de Neuroscience & Biobehavioral Reviews dergisinde yayınladılar. Orta ila yüksek dozlarda THC’nin üç ila on saat süren bozulmaya neden olabileceğini buldular.

Dr. McCartney, “THC’nin sürüş ve bilişsel performansı akut olarak bozduğu bilinmektedir” diye açıklıyor. Yine de birçok kişi ot içtikten sonra etkilerinin ne kadar sürdüğünden emin değil. Bu bilgi aynı zamanda esrar kullanımına ilişkin yeni yasaların geliştirilmesi açısından da son derece önemlidir – örneğin karayolu trafiğinde uyuşturucuyla mücadele bağlamında.

Araştırmacı sözlerine şöyle devam etti: “Analizimiz, yüksek dozda THC’nin ağız yoluyla tüketilmesi halinde bozulmanın 10 saate kadar sürebileceğini gösteriyor.” “Bununla birlikte, daha düşük dozlarda THC sigara içilerek veya buharlaştırılarak tüketildiğinde ve daha basit görevler (örneğin, tepki süresi, sürekli dikkat ve çalışma belleği gibi bilişsel beceriler gerektirenler) yerine getirildiğinde daha tipik bir bozulma süresi dört saattir.”

Ağır kullanıcılar önemli ölçüde tolerans gösteriyor

McCartney’e göre, “daha yüksek dozda THC solunduğunda” bozulma altı veya yedi saate kadar sürebiliyordu. Araştırmacılar, araştırmalarında orta düzeyde bir THC dozunu yaklaşık on miligram olarak belirlediler. Ancak bu değer öncelikle düzenli olarak esrar içen kişiler için geçerlidir. Ara sıra kullananlar için bu zaten yüksek bir doz olabilir.

“Ara sıra esrar kullananlarda bozulmanın düzenli esrar kullananlara kıyasla çok daha öngörülebilir olduğunu tespit ettik,” diye ekliyor yazarlardan Dr. Thomas Arkell “Ağır kullanıcılar esrarın sürüş ve bilişsel işlev üzerindeki etkilerine karşı önemli ölçüde tolerans gösterirken, genellikle bir miktar bozulma gösteriyor.”

Kaynak:

 „Determining the magnitude and duration of acute Δ9-tetrahydrocannabinol (Δ9-THC)-induced driving and cognitive impairment: A systematic and meta-analytic review“ (2021, Neuroscience & Biobehavioral Reviews); University of Sydney

Click here to display content from YouTube.
Learn more in YouTube’s privacy policy.

İNCECİK KANALLAR VE SIVILAR: MİKROAKIŞKANLAR

Bitkisel dokular denince hepimizin aklında ışıklar çakar: pek doku, sürgen doku, koruyucu doku, iletim doku vs… Saydıklarımız arasından bu yazımız için önemli olan ise iletim dokusu. İletim dokusu, odun ve soymuk boruları başta olmak üzere, kanallar aracılığıyla su, besin ve mineralleri bitkinin bütün bölümlerine iletir. Evet, hatırlar gibisiniz. Gene de, bitkilerin ve dğer canlıların bütün bu işlemleri ne kadar başarılı bir şekilde yaptıkları çoğunlukla gözümüzden kaçar. Aslında bitkisel iletim, yarıçapı santimetreden nanometreye değişen on binlerce esnek kanalda, kılcallık ve deformasyona uyumlu şekilde taşıma yapma becerisine sahiptir. Bu sistem akışkanlara mikro ve nano, yani metrenin milyonda ve milyarda biri düzeyinde hükmedebilir.

Şekil 1. Mikroakışkan teknolojisiyle işleyen bir cihazın boyutları madeni paranınkini geçmiyor. Bu şekildeki cihazda yüz civarında kanal yan yana ve birbirinden ayrı duruyor. Bu, aynı işlemi tek seferde yüz kez tekrarlayabilmemiz veya aynı anda yüz farklı değişkeni test edebilmemiz demek. (Fotoğraf: Lawrence Livermore Ulusal Laboratuarı, ABD)

Bilimin günümüzde ulaştığı noktalardan biri, her ne kadar doğa kadar başarılı olmasa da, akışkanların mikro- ve nanometre mertebesindeki dinamiklerini çözerek metrenin milyonda/milyarda biri boyutlarında mühendislik yapabiliyor olmak. Misal, yarıçapı 10 mikrometre (μm) olan kanallar üretip (Şekil 1) içlerine onlarca hücreyi tek tek yerleştirebiliyor, sonra her bir hücrenin etrafındaki ortamı aynı anda değiştirip etkileri gözlemleyebiliyoruz. Veya proteinlerin bir araya gelip daha büyük yapılar oluştururken çevrelerine uyguladığı kuvvetleri ölçüp hesaplayabiliyoruz. Kısacası, mikroakışkan teknolojisi uygulayabiliyoruz. Yazımızın ilerleyen kısımlarında sizlere mikroakışkan teknolojisinin heyecan verici dünyasından bahsetmek istiyoruz.

Mikro ve nano hacimlere sahip sıvıları mikrometrelik kanallarda dolaştırmaya ve yapılan her türlü mühendislik mikroakışkan teknolojisi olarak tanımlanıyor [2, 5]. Hayatımızın birer parçası olan tesisatlar, musluklar, borular ve bahçe hortumlarında suyun litrelercesini bir arada akarken görmeye alışkın olan bizler için, bu sistemlerin metrenin milyonda birine inmesi çok büyük bir şaşkınlık yaratmayabilir. Ancak boyutlar küçüldükçe akışkanların değişen özellikleri, bu yazıda belirteceğimiz pek çok farklı fiziksel yapının işlemesine izin veriyor. Öte yandan mikroakışkan teknolojisi, bazı fiziksel olguların ve öngörülerin incelenmesi, hassas kimyasal ve biyolojik analiz, hasta başında ve hastaya özel teşhis, özelleşmiş reaktörler ve çip üstü laboratuar gibi birçok muhteşem uygulamanın yapılabilmesini sağlayan bir harikadır.

 

Nerelerden Geldik?

Maddenin temel yapılarina ilişkin bilgilerimiz, Antik Yunan’daki felsefi yaklaşımları ve çıkarımları bir kenara bırakırsak, 16. yüzyılda başladı. Maddenin temeliyle ilgili çalışmalara paralel olarak akışkanlar üzerindeki bilgimiz de arttı. Arşimet’ten sonra Isaac Newton, Daniel Bernoulli, Blaise Pascal gibi bilim adamlarının yaptıkları çalışmalar sayesinde insanlık akışkanların, ya da bildiğimiz şekliyle sıvıların ve gazların, kuvvet altında ne şekilde davrandığını keşfetti. Yirminci yüzyılda kimya ile kuantum mekaniğindeki gelişmeler sayesinde maddenin yapısına dair bilgilerimizi genişlettik ve mikro düzey, yani bir canlı hücresinin boyutları seviyesinde işlerin nasıl yürüdüğünü anlamaya başladık. Lakin mikro dünyayı bilmek ile mikron mertebesinde çalışmak ve mühendislik yapmak farklı şeylerdir [5]. Bundan dolayı, her ne kadar gözümüzün önünde bu işi başarıyla yürüten bitkiler olsa da, insanlık metrenin milyarda biri düzeyinde mühendislik yapabilmek için çok güçlü bilgisayarları cebimize sokan yarıiletken teknolojisini beklemek zorunda kaldı.

Yarıiletken teknolojisi, 1850’lerden sonra silisyum, germanyum ve galyumun, iletken metallerinkiyle yalıtkan ametallerinki arasındaki elektriksel iletkenliğinin kullanılmasıyla hayatımıza girmeye başladı. Özellikle kauntum mekaniğinin, yani atom seviyesindeki dünyanın işleyişini ortaya koyan yasaların ortaya çıkarılması bu malzemelerin daha iyi anlaşılmasını sağladı. Yarıiletken teknolojisi ile birlikte gelişen mikroelektronik, sadece elektronik yapıların değil, ısıl ve mekanik sistemlerin de küçültmesine ve hızlandırılmasına ön ayak oldu. Bütün bu gelişmelerin sonucu, MEMS olarak kısaltılan mikroelektromekanik sistemlerdir. MEMS’in örnekleri arasında yazıcıların mürekkep püskürtmesini sağlayan yapılar ile algılayıcılar var. Akışkanların da MEMS teknolojisine dahil edilmesiyle mikroakışkan teknolojisi kendini tarih sahnesinde buldu.

 

İyi de, ne işimize yarıyor?

Mikroakışkan teknolojsinin uygulama alanı, temel fizikten moleküler biyolojiye, kimyadan tıbba kadar uzanıyor. Üretiminin oldukça ucuz olması, kütlenin ve ısının çabuk ve kolay iletimiyle dağıtımı ile dizayn konusundaki esnekliği gelecek için de büyük umutlar beslenmesine sebep oluyor.

Şekil 2. Gaz kromatografisi (Wikipedia’dan Türkçeleştirildi.)

Mikro ve nano seviyeyi kontrollü bir şekilde çalışabilmemiz, analiz yöntemlerini hassaslaştırmamızı ve geliştirmemizi kolaylaştırıyor. Özellikle kimyacıların örneklerin içeriğini belirlemekte kullandığı kromatografi gibi metotların keskinleştirilmesi, çok daha az örnek ile daha hassas işlem yapılabilmesine olanak veriyor [5]. Gözümüzde daha rahat canlanması için gaz kromatografisini (GC) ele alalım: Bu metot bozulmadan buharlaşabilen örneklerin kimyasal yapısının belirlenmesinde ve bileşenlerine ayrıştırılmasında kullanılır. İncelenecek örnek, içi seçici-tutucu bir maddeyle dolu olan tüpe verilir. Gazın içerisindeki bileşenler bu madde ile farklı oranlarda etkileştiğinden, tüp içerisindeki hızları da birbirinden farklı olur. Farklı hızlarla hareket eden gazlar, işlemin pek çok kez tekrarlanması ile verimli bir şekilde ayrıştırılabilir. Mikroakışkan teknolojisiyle ise 10-15 μm yarıçapında kanallar üretip ve onları alanı birkaç santimetrekareyi geçmeyecek bir yüzeye monte ediyoruz Böylece metrelerce uzunlukta bir tüpü birkaç santimetrekareye sıkıştırmış oluyoruz. Bu sayede, bütün GC sistemi minyatürleştirilmiş oluyor ve çok daha hızlı ve verimli işliyor [6].

Mikroakışkanların en heyecanlandırıcı uygulamalarından biri, çip üzerinde laboratuar (LOC) teknolojisi (Şekil 3). LOC’nin temeli, bir laboratuarda yapılan bütün işlerin birkaç mm uzunluğundaki çiplerde gerçekleştirilmesi. Böylece çok küçük hacimlerdeki örneklerin kimyasal ve fiziksel yapılarının, birbirlerine paralel olarak, hızlı ve doğru bir şekilde belirlenebilmesi sağlanıyor. Çok farklı ve kompleks dizaynlara sahip olabilen LOC sayesinde, bir damla kan ile kan hücresi sayımı, olası hastalıkların teşhisi, tek kanserli hücrelerin tayini gibi farklı işlemleri tek bir yapıda toplamamız mümkün olacak.

Şekil 3. Birden fazla bileşenin karışımı ve tepkimesi için düzenlenmiş LOC cihazı sayesinde karmaşık işlemler çok küçük boyutlarda gerçekleştirilebiliyor. (Kaynak: ABD Ulusal Genom Bilimi Enstitüsü)

Bir diğer önemli uygulama ise, kişi odaklı ve hasta başında teşhis. Gelişmiş LOC cihazları ile, hastaların hastaneye gitmeden gerekli tahlilleri yapabilmeleri, mikroakışkan teknolojisinin sağlık bilimlerine önemli bir katkısı [4]. Mikrocihazların boyutları, 1 ilâ 100 μm boyutlarındaki hücreleri tek tek incelememizi sağlıyor. Hücreleri içlerinde bulundukları dokudan ayırıp ayrı ortamlara aktarabiliyor ve aynı anda pek çok hücrenin ayrı ayrı hangi değişkenlere ve maddelere tepki verdiklerini, cihaz içerisindeki sıvının niteliğini değiştirerek takip edebiliyoruz. Öte yandan, biyoteröre karşı savaşta, zar zor elde edilen çok küçük örneklerin içerdiği eser miktarda maddenin analizi de bu yolla gerçekleştirilebiliyor (Şekil 4) [7]. Sağlık alanındaki uygulamaların pazar büyüklüğü, uygulamanın gelecekteki ekonomik değerine ışık tutuyor: 2010 yılı itibariyle iki milyar dolarlık bir pazar yaratılmış durumda.

Şekil 4. ‘Mikrokanallarda damlacık üretimi. Yağ-su karışımı ve uygun ara elemanlar sayesinde kanalların içinde damlacıklar oluşturmak, hatta bu damlacıkları da protein molekülleriyle doldurmak mümkün. Damlacık içerisinde gerçekleştirilen kimyasal tepkime sayesinde proteinlerin an be an izlenmesi ve gelişimlerinin gözlenmesi mümkün.’ (Knowles vd., 2011 makalesinden yazarların izniyle Türkçeleştirilerek kullanıldı.)

Paralel kanallarda gerçekleştirilen farklı kimyasal reaksiyonlar ile, reaksiyonların gerçekleştiği ortamlar da küçülmüş oluyor. Mikro seviyede ısı ve kütle transferlerinin kolaylaşması da cabası [6]. Hedef, aynı anda kimyasal tepkimeleri gerçekleştiren, ürünleri ve atıkları ayrıştırabilen, ürünlerin kimyasal yapısını belirleyebilen, küçük, dayanıklı ve taşınabilir sistemler üretmek. Mesela, 1998 yılında, Ann Arbour’daki Michigan Üniversitesi’nde geliştirilen bir cihaz ile araştırmacılar, nanolitre hacmindeki DNA örneklerini karıştırma, çoğaltma ve parçalama ile tepkime sonunda oluşan ürünleri belirleme işlemlerini aynı anda yapma şansını buldular [1]. Şu anki seviyemiz ile bir fabrika seviyesinde üretim henüz söz konusu değil, ancak gelişmeler yakın gelecekte bunu da gerçekleştirebileceğimizi gösteriyor [7].

 

Peki, tam olarak ne yapıyoruz?

Mikroakışkanlar, insanlığın akışkanlara dair bilgisini mikro düzeye indirmesi ve metrenin milyonda biri mertebesinde manipülasyonlar, değişimler yapabilmesinin ifadesidir. Artık o dünyayı sadece anlamıyor, değiştirebiliyoruz da.

Makrodan mikro seviyeye indiğimiz zaman, akışkanların davranışları farklılık göstermeye başlıyor. Kütleçekimi gibi uzaysal/hacimsel, yani etkisini üç boyutta gösteren kuvvetlerin önemi azalıyor. Buna karşılık kılcallık; sıvının kanal duvarlarıyla güçlü etkileşimi ve yüzey gerilimi; sıvı yüzeyinin kuvvete karşı gösterdiği direnç, yani yüzeysel kuvvetler daha çok önem kazanmaya başlıyor.

Temelde gözümüzde canlanan günlük tesisattan pek farkı olmamasına rağmen, kütleçekiminin önemini kılcallık ve yüzey gerilimi gibi kuvvetlere bırakması, cihazlarda günlük hayattan farklı dizaynlara yönelmemize neden oluyor. Mikroakışkanlarla çalışmak için, akabilecekleri kanallar, akışı sağlayacak mikropompalar, işleyişi düzenleyecek mikrokapılar ve mikrovanalar yapmamız gerekiyor. Bu yapıları gerçekleştirebilmek içinse, silikon, polimer veya cam malzemeler kullanıyor ve hayalgücümüz ve fiziksel yasalar arasında kalan bölgede cihazlarımızı yaratıyoruz.

 

Sonuç

Bu yazımızda heyecan verici uygulamaları ve parlak bir geleceği olan mikroakışkan teknolojisinden bahsettik. Mikrometre boyutlarındaki kanallarda akışkanların kontrol edilmesiyle gerçekleştirilen bu uygulama ile tıbbi teşhis ve kimyasal analiz için gerekli olan madde miktarı azaltılmış, tıp ve temel bilim uygulamalarında çığır açabilecek sonuçlar elde edilmiştir. Gelecek, mikrodan nanoakışkanlara doğru evrilecek olsa da, bu konuya yazımızda değinmedik. Mikroakışkan teknolojinin şu anki durumu ve gelecekteki beklentiler göz önüne alındığında, alınması gereken çok yol olduğu aşikar; ancak karşılığında bu teknolojinin insanlığa hizmetleri o denli büyük olacak.

 

Kaynaklar

AçıkBilim

[1) M. A. Burns vd., 1998. An Integrated Nanoliter DNA Analysis Device. Science 282:484–487.

[2) F.A. Gomez. Biological applications of microfluidics. Wiley-Interscience, 2008.

[3) J.W. Hong, vd., 2004. A nanoliter-scale nucleic acid processor with parallel architecture. Nature Biotechnology 22:435–439.

[4] A. Rasooly. Lab on a Chip Technology: Biomolecular separation and analysis, volume 2. Caister Academic Press, 2009.

[5] P. Tabeling. Introduction to microfluidics. Oxford University Press, 2005.

[6] S.C. Terry. A gas chromatography system fabricated on a silicon wafer using integrated circuit technology. 1975.

[7] P. Watts ve C. Wiles, 2007. Recent advances in synthetic micro reaction technology. Chemical Communications (5):443–467.

Şekil 4. T. P. J. Knowles vd., 2011. Observation of spatial propagation of amyloid assembly from single nuclei. Proceedings of the National Academy of Sciences of the United States of America 108:14746-14751.

”Fight Club” ve Bilim: Sabunlar, Hidrofobi, Hidrofili ve Kimya

 
“Ben, Jack’in lise kimya öğretmeniyim.”
Yazımızda, Dövüş Kulübü filminin senaryosunda ve romanının içeriğinde önemli bir rol oynayan kimyayı inceleyeceğiz. Dövüş Kulübü‘nden kimyayı alırsak geriye ne kalır ki? Ancak başlamadan önce belirtelim, bu yazıda herhangi bir patlayıcı imalatından bahsedilmeyecektir. Kaldı ki, bir adamın kendi kendini dövmek suretiyle gerçeği bulmasının anlatıldığı bu kült filmde de malum patlayıcının nasıl yapıldığı izleyiciye tam olarak verilmiyor. Daha doğrusu, yanlış ve eksik veriliyor. Benzer macera veya bilimkurgu filmlerinde de tehlikeli olabilecek, izleyiciyi istemeden tehlikeye sokabilecek veya art niyetli kişilerin faydalanabileceği bilimsel prosedürler tam olarak aktarılmaz veya yanlış aktarılır.
Yazımız, meşhur kimyasal yanık sahnesiyle ve sabun yapımıyla daha fazla ilgilenecek; bunu yaparken de temel kimya laboratuvarı güvenlik kurallarına değinilecek.
Sahne, Tyler Durden’ın Anlatıcı’ya derdini anlatmak için onu karşısına alıp konuşmasıyla başlıyor. Konuşma esnasında elini bileğinden yakalıyor ve dudaklarını ıslatarak elini ıslak bir şekilde öpüyor. Daha sonra plastik bir şişe içindeki beyaz bir malzemeyi  eline boca ediyor ve o malzeme Anlatıcı’nın elini yakmaya başlıyor. Anlatıcı can derdindeyken, Tyler döktüğü malzemenin “LYE” olduğunu söylüyor.
Lye, İngilizcede iki farklı ama aynı zamanda benzer maddeye verilen isim: sodyum hidroksit (halk arasında kostik olarak bilinir) ve potasyum hidroksit. Ancak yaygınlığı açısından bu malzemenin sodyum hidroksit (NaOH) olduğundan neredeyse eminiz. Kaldı ki, sabun yapımı kısmında da değineceğimiz üzere, sodyum hidroksit sert sabun yapımında da kullanılıyor ve Tyler Durden’ın sodyum hidrokside daha aşina olduğunu söyleyebiliriz. Potasyum hidroksit (KOH) ise sert sabun değil, arap sabunu olarak bildiğimiz yumuşak sabun yapımında kullanılır. Eğer Tyler Durden bir arap sabunu imalatçısı olsaydı, bu karakter üzerine bu kadar karizmatik bir kişilik bölünmesi kurgusu yapılamazdı herhalde. Bu yüzden sodyum hidroksit, doğru seçim.
Sahnemize dönelim. Sahne boyunca yanık süredursun, Tyler Durden, Anlatıcı’ya birtakım hayat dersleri verirken, bir yandan da özel kimya dersi anlatıyor. Öncelikle elini neden öpüyor? Öpmeden direkt olarak dökseydi veya kuru öpüp dökseydi Anlatıcı’mız aynı farkındalık acısını çeker miydi? Yanıtımız, belki ama bu kadar değil. Tyler Durden’ın kullandığı NaOH, su ile karıştığı zaman Na+ ve OH- iyonlarına ayrılır. Kimyasal yanıktan sorumlu olan aslında OH- iyonudur. Ancak iyon haline geçebilmesi için suyun içinde iyonlarına ayrılması gerekmektedir. Artık bir kapitalizm eleştirisi haline gelmiş o mezbele odada nem varsa ve o nem Anlatıcı’nın elinde de bulunmaktaysa, veya Anlatıcı’nın bir sebepten ötürü eli çok terliyorsa, NaOH döküldüğü andan itibaren iyonlaşmaya başlar, ve sonuç olarak deride hafif yanıklar oluşturabilir. Ancak nemin iyonlaşma için sağlayacağı bu su miktarı yetersizdir. Ama ayrıcaaa, NaOH higroskopik bir maddedir, nem çekicidir. Kuru bir deri üzerinde dursa bile, bir noktadan sonra üstüne nem çekecektir.  Tyler Durden, konuyu uzatmayıp, anlatmak istediğini hemen netleştirmek için elini mümkün olduğunca ıslak bir şekilde öpüp NaOH’i boca ediyor.
Peki OH- iyonunun insanla derdi nedir? Anlatıcı neden acı çekiyor? Kimyasal yanık nedir? Kimyasal maddelerin Anlatıcı’yı yaktığı gibi bizi de yakıp kafamızda şimşekler çaktırmalarına, epifaniler (görüntüler) yaşatmalarına karşı nasıl önlemler alabiliriz?
Kimyasal yanıklara karşı alacağımız ilk önlem kimyacı olmamaktır! Daha sonra genel tedbirler gelir.  İçinde ne olduğundan emin olmadığınız şişelerin kapaklarını dikkatlice açmalısınız. Maddeyi koklamamalı veya tatmamalısınız. Kesinlikle uygun bir koruyucu eldiven, maske ve gözlük kullanmalısınız.
Kimyasal yanıklar, deri üzerinde meydana gelen herhangi bir kimyasal reaksiyonun deri bütünlüğünü bozması demektir. Kimyasal yanıklara bir sürü farklı madde, farklı şekillerde neden olabilir. Asitler, bazlar ve organik çözgenler çeşitli şekillerde deri bütünlüğünü bozacak reaksiyona girerler. Bazı yanıkların telafisi mümkünken, bazılarının telafisi yoktur. Özellikle gözün, gözlükle korunması çok önemlidir. Deri kendini tamir edebilirken, gözün tamiri mümkün değildir. Ayrıca maddelerin üzerinde bulunan etiketlerdeki tehlike uyarıları dikkate alınmalıdır. Tyler Durden’ın kullandığı şişenin üstünde, belki biz göremiyoruz ama şu işaret bulunmaktadır:
KIRMIZI RENK: Yangın tehlikesini belirtir. “0” rakamı, yanma tehlikesi yoktur anlamına gelir.
MAVİ RENK: Sağlık tehlikesini belirtir. “3” rakamı, çok tehlikeli anlamına gelir. (“4” ölümcül demektir.)
SARI RENK: Reaktifliğini belirtir. “1” rakamı, ısıtınca kararsız hale geçeceğini belirtir.
BEYAZ RENK: Özel bir tehlikeyi belirtir. Daha başka özel bir tehlikesinin olmadığını belirten “-“ işareti konulmuştur.
Tyler Durden’ın tükürüğü sayesinde açığa çıkan OH- iyonunun yapacağı ilk iş, çevresinden bir adet H+ (hidrojen iyonu) almaktır. Bunu derideki proteinlerden alacaktır. Proteinler, amino asit denilen yapıtaşlarının bir araya gelmesiyle oluşan, canlı hücresi için vazgeçilmez bir organik maddedir.
Amino asitler birbirine bağlanarak uzun zincirler meydana getirirler. Buna primer (birincil) yapı denir. Amino asitler bu durumda sadece peptit bağlarıyla bağlanmışlardır.
Zincir boyunca tüm amino asit uçları birbirine yaklaşarak, birbirleri arasında “hidrojen bağı” denilen özel bir bağ kurarlar. Hidrojen bağları neticesinde birbirine yaklaşan amino asit uçları, zinciri bükmeye başlarlar. Böylece amino asitler birbirlerine peptit bağına ek olarak bir de hidrojen bağı ile bağlanmışlardır. Buna da sekonder (ikincil) yapı denmektedir.
Uzun protein molekülleri, amino asitlerin hidrofob (suyu iten) uçları içeride kalacak ve hidrofil (suyu çeken) uçları dışarıda kalacak şekilde bükülür. Buna da tersiyer (üçüncül) yapı denir.
Denatürasyon, bir proteinin ısı ve radyasyon gibi etkilerle veya asit, baz, organik çözücü, inorganik tuzlar gibi kimyasallarla reaksiyona girerek kuaterner, tersiyer ve sekonder yapılarını kaybedip primer yapı haline geçmesidir. OH- iyonu proteinlerin hidrojen bağlarındaki H+ iyonunu kendine almak isterken bu sekonder ve tersiyer yapıları bozar ve proteini denatüre hale getirir. Protein artık işlevini yapamaz. Buna bağlı olarak da hücreler ve tabii ki deri dokusu ölür.
Lavabo açıcı olarak da evlerimizde kullandığımız NaOH, aslında lavabolarımızda da farklı bir iş yapmaz. Kıl, saç, deri parçaları ve yağların tıkadığı lavabolarda benzer tepkimeler meydana getirerek organik moleküllerdeki hidrojen bağlarını ve hatta ondan daha kuvvetli bağları kırar. Diğer bir deyişle, bu molekülleri reaksiyona daha açık hale getirerek onların su içerisinde sürüklenmesini sağlar ve böylelikle lavabolarımızı kirlerden arındırır.
Şimdi, deri üstündeki NaOH’e dönersek, Tyler Durden, acıyla kıvranan Anlatıcı’ya yanığın üstüne su dökmenin acısını daha da arttıracağını söylüyor. Bu hem doğru hem de yanlış. Aslında doğruluğu ve yanlışlığı daha çok suyun nasıl tatbik edildiği ile ilgili. Tepkimenin gerçekleşmesine olanak sağlayan ortam olarak su, deriye daha fazla eklenirse derideki iyonlaşmamış NaOH’i de iyonlaştıracağından, bu daha fazla OH- ve doğal olarak daha fazla denatüre protein demek olacaktır. Ancak su şiddetli bir şekilde fazla NaOH’i de deriden giderecek şekilde tatbik edilirse, en azından reaksiyonun sürmesini engelleyecektir. Bu nedenle asit veya NaOH gibi baz yanıklarına tazyikli su ile müdahale edilebilir.
Tyler Durden’ın su yerine alternatif olarak sunduğu sirke ise hafif bir asittir ve yanlış bir tedavi yöntemi değildir. NaOH’i asit ile nötrlerken dikkat edilmesi gereken şey sert asitlerin değil, sirke gibi hafif asitlerin kullanılmasıdır. Tyler Durden, sirke kullanırken “yanığı nötrleştirmek”ten bahsediyor. Ancak bu doğru değil. Yanık, nötrlenmeyecek bir şeydir. Yanığın geri dönüşü olmaz. Denatürasyon tepkimeleri tersinir olmayan, geri dönüşsüz tepkimelerdir. Aynı yumurtanın ısıtıldıkça denatüre olup sertleşmesi ama soğutulunca tekrar sıvılaşmaması gibi geriye dönüşü olmayan tepkimelerdir. Sirkenin yapacağı şey, OH- iyonunun ihtiyacı olan H+ iyonuna kaynaklık etmesidir. OH-, H+ iyonunu proteinden değil, sirkeden alacaktır. Bu bağlamda birbirlerini nötrleyecekler ve proteini yalnız bırakacaklardır.
Yine de NaOH yanıkları için, yanığı tazyikli akan su altında 15 dakika boyunca tutmak ve daha sonra soğuk sargı yapmak gereklidir. Kullanılan su da soğuk olmalıdır çünkü NaOH çözünmesi ekzotermik (dışarıya ısıveren) bir reaksiyondur. Aynı zamanda ısı yanıklarına da neden olur.
Peki bu NaOH’in deriyle olan münasebeti tam olarak nerede biter?
Eğer deriyi geçip altındaki yağ tabakasına ulaştıysa, artık sabundan bahsedebiliriz. Çünkü sabun, NaOH ve yağ demektir. Sabunlar, kimya dilinde “yağ asitlerinin sodyum tuzları”dır. Dövüş Kulübü’nde de belirtildiği gibi, her türlü yağdan sabun yapılabilir. Tek ihtiyacımız olan biraz NaOH’tir. (Eğer KOH, yani potasyum hidroksit kullanırsak arap sabunu elde ederiz.)
Herhangi bir arınmadan bahsedecek bir film için sabun çok güzel bir simge olacaktır. Filmin veya romanın alt metin ve sembolik analizlerine girmeden, sabun hakkında söylenebilecek tek şey vardır: Sabun bir temizleyicidir. Bir dezenfektan değildir. Yağları, kirleri temizler. Ancak mikrop ve bakteriden her zaman arındırmayabilir. Bakterilerden tam olarak arınmaya sterilizasyon, büyük oranda arınmaya ise dezenfeksiyon denir. Sabun bunların çok azını yapabilen bir temizleyicidir. Ancak belki yüzey aktifliği nedeniyle bakteri hücresini patlatıp bakteriyi öldürmesinden bahsedebiliriz. Ama asıl görevi, su ile giderilmeyen kirleri ve yağları su içinde sürüklenebilecek hale getirmektir.
Yağlar, uzun moleküllerden oluşur. Bu nedenle suda çözünmezler.  Yağ moleküllerini suda çözünebilir hale getirmek için sabun kullanılır. Sabun molekülü, aslında yağlarla başa çıkmak, onları su içinde uysal hale getirmek için sodyumla modifiye edilmiş, evcilleştirilmiş yağ asitleridir diyebiliriz. Sabun molekülünün temizleme özelliği iki farklı uca sahip uzun bir molekül olmasından ileri gelir. Bu uçlardan hidrofobik olan yağ molekülüne yaklaşır. Hidrofilik olan ucu ise dışta kalır. Böylelikle kirin veya yağın etrafında, hidrofilik uçları dışarıda olan bir küre meydana gelir. Hidrofil, suyu seven demektir. Artık her tarafı hidrofil hale gelmiş bu kürecik suyla beraber sürüklenmeye hazırdır.
Eğer NaOH, deriyi geçip yağa ulaşırsa, derinizin altında bir sabunlaşma başlayacaktır. Ama o kadar fazla miktarda NaOH’e maruz kalacağınızı veya ilk yardımda gecikeceğinizi sanmıyoruz. Tabii ki, çilekeş Anlatıcı’mız değilseniz.
Kimyasallar, hayatımızın her yerinde karşımıza çıkan, oldukça kullanışlı ancak bir o kadar da tehlikeli olabilecek maddelerdir. Gündelik yaşamda davranışını bilmediğiniz, emin olmadığınız kimyasalları kullanırken hakkında yeterince bilgi edinmeniz, varsa kullanma talimatlarını okumanız ve uygulamanız hayati önem taşımaktadır. Kimyasalların ambalajındaki işaretler, bilim insanlarından oluşan komisyonların, uzun yıllar boyu süren çalışmaları üzerine geliştirilip konulmuş işaretlerdir. Sağlığınızın yanı sıra, bu işaretlere en azından göz atmak onların da emeğinin boşa çıkmaması demektir.
Özellikle küçük çocuklara, her şeffaf sıvının su olmadığı; bir sıvının su olup olmadığını anlamak için onu koklamanın, tatmanın veya dökmenin yanlış bir hareket olduğu anlatılmalıdır. Şişelerin içinde başka herhangi bir sıvı saklanmamalıdır. Davranışı bilinmeyen sıvılar ve maddeler, sıcak veya soğuk ev eşyaları etrafında tutulmamalıdır.
2013 yılı ABD yıllık yanık raporlamasına göre, kimyasal yanıkların %49’u iş yerinde, %42’si evde, %2’si de diğer yerlerde gerçekleşen kazalardan ötürüdür. Bu istatistik aynı zamanda diğer ülkelerin durumunu da yansıtabilir. Kimyasal yanıkların yarısına yakını evde gerçekleşen kazalardan meydana gelmektedir. Bu kazalar her birimizi, özellikle yaşlıları ve çocukları öncelikli olarak etkileyecek tipte kazalardır. http://www.ameriburn.org/2013NBRAnnualReport.pdf
 
 
Düzenleyen: Ayşegül Şenyiğit (Evrim Ağacı) ve Şule Ölez (Evrim Ağacı)
Kaynaklar ve İleri Okuma/İzleme:
  1. “Fight Club,” by David Fincher, Brad Pitt, Edward Norton, Chuck Palahniuk; Fox, 1999.
  2. MH Education

Solutus

” Solute” kelimesi Latince “gevşemiş” veya “çözünmüş” anlamına gelen solutus kelimesinden gelmektedir. İngilizce’de ilk kez 1890’larda bir çözelti içinde çözünen maddeyi ifade etmek için kullanılmıştır.

Çözünen madde, bir çözelti içinde çözünmüş olan bir maddedir. Çözünenin içinde çözündüğü maddeye çözücü denir. Çözünen madde ve çözücü birlikte bir çözelti oluşturur.

Fiziksel Özellikler:

Faz: Çözünenler her üç fazda da bulunabilir: katı, sıvı ve gaz. Örneğin, tuz (katı) veya alkol (sıvı) su (sıvı) ile karıştırıldığında veya oksijen (gaz) nitrojen (gaz) ile karıştırılarak hava oluşturulduğunda.

Miktar: Bir çözeltide genellikle bir maddeden (çözücü) diğerine (çözünen) göre daha fazla bulunur. Ancak, bir çözeltide birden fazla çözünen olması mümkündür.

Çözünen Madde Boyutu: Çözünen parçacıkların boyutu değişebilir. Parçacıklar yeterince büyük olduğunda, genellikle çıplak gözle görülebilirler. Ancak birçok durumda çözünen parçacıklar mikroskobiktir.

Kimyasal Özellikler:

İyonlaşma: Tuzlar gibi bazı çözünenler çözündüklerinde iyonize olurlar. Bu, net elektrik yüküne sahip atomlar veya moleküller olan iyonlara ayrıldıkları anlamına gelir.

İyonlaşmayanlar: Tüm çözünenler iyonlaşmaz. Örneğin şeker suda çözünür ancak iyonlaşmaz. Bu çözünenler genellikle kovalent (moleküler) bileşiklerden oluşur.

Çözücü Özellikleri Üzerindeki Etkileri:

Kaynama ve Donma Noktaları: Çözünenler, çözücünün kaynama ve donma noktalarını etkiler. Genellikle donma noktasını düşürür ve kaynama noktasını yükseltirler. Buzlu yollara tuz eklememizin (buzun donma noktasını düşürerek erimesini sağlamak için) ve araba radyatörlerine antifriz eklememizin (suyun donma noktasını düşürüp kaynama noktasını yükselterek donmasını veya taşmasını önlemek için) nedeni budur.

Buhar Basıncı: Bir çözünen madde, bir çözücünün buhar basıncını düşürme eğilimindedir. Bunun nedeni, çözünen partiküllerin çözücünün yüzeyinde yer kaplayarak çözücü partiküllerinin gaz fazına girmesini engellemesidir.

İletkenlik: Çözünen madde iyonlaşırsa, çözeltinin elektrik iletme kabiliyetini artırır.

Biyoloji ve Tıpta Çözünen Madde:

Biyolojik sistemlerde çözünen maddeler hayati rol oynar. Hücrelerin içindeki ve dışındaki sıvıların bir parçasıdırlar ve neredeyse tüm hücresel süreçlerde yer alırlar. Tıptaki çözünenler, salin veya glikoz çözeltisi gibi bir çözücü içinde çözünmüş olarak vücuda verilebilen ilaçları içerir.

Tarih

“Çözünen” kelimesinin tarihi, “çözelti” kelimesinin tarihiyle yakından bağlantılıdır. “Çözelti” kelimesi İngilizce’de ilk olarak 14. yüzyılda, birbirine eşit şekilde karışmış iki veya daha fazla maddenin karışımını ifade etmek için kullanılmıştır. 18. yüzyılda “çözelti” kelimesi daha spesifik olarak bir çözünen ve bir çözücü karışımını ifade etmek için kullanılmaya başlanmıştır.

“Çözünen” terimi ilk olarak 1894 yılında Amerikalı kimyager William D. Bancroft tarafından önerilmiştir. Bancroft, çözünmüş maddeyi çözücüden ayırmak için “çözünen” terimine ihtiyaç olduğunu savunmuştur. “Çözünen” terimi diğer kimyagerler tarafından hızla benimsendi ve o zamandan beri kullanılıyor.

Günümüzde “çözünen” kelimesi kimyada yaygın olarak kullanılan bir terimdir. Bir çözelti içinde çözünmüş olan maddeyi ifade etmek için kullanılır. Çözünen, tipik olarak bir çözeltideki iki maddeden daha küçük olanıdır ve çözücü tarafından çözünen maddedir.

Kaynak:

  1. Atkins, P., & de Paula, J. (2010). Atkins’ Physical Chemistry. Oxford University Press.
  2. Berg, J. M., Tymoczko, J. L., & Gatto, G. J. (2012). Biochemistry. W.H. Freeman and Company.

Click here to display content from YouTube.
Learn more in YouTube’s privacy policy.