Neden Bronzlaşırız?

Tatil sezonun bitimine yaklaştıkça, önceden sarışın olan birçok insanın artık etrafta esmer dolaşmaya başladığına daha da çok şahit oluruz. Bunun sebebinin ne olduğunu tabii ki biliyoruz, güneşlenerek ya da bir şekilde güneş ışığına maruz kalarak bronzlaşıyorlar. Yalnızca çevrenizle de sınırlı değil; eğer tatile gidebilen şanslı kişilerdenseniz ve güneşlenmeyi seviyorsanız, teninizdeki bu renk değişimine doğrudan tanıklık etmişsinizdir. Peki nasıl oluyor da güneş ışığına maruz kaldığımızda tenimizin renginde değişim meydana geliyor?

Konuya geçmeden önce, güneş ışığının ne olduğunu detaylandırmak gerekiyor.

Güneş ışığı, Dünya’ya 3 farklı formda ulaşır: kızılötesi, görünür ışık ve morötesi ışık. Morötesi ışık da 3 kategoriye ayrılır.

  • 315-400 nm aralığında olan, bronzlaşma ile ilişkili olan ve siyah ışık olarak da bilinen UVA.
  • 280-315 nm aralığında olan, güneş yanıklarına sebep olabilecek UVB.
  • 100-280 nm aralığında olan ve bize hiç ulaşamadan Dünya’nın atmosferi tarafından filtrelenen UVC.

Deniz seviyesindeki morötesi ışımanın %99’u aslında UVA’dır. Genellikle UVB’nin güneş ışığına maruz kalındığında meydana gelebilecek tehlikelerden sorumlu olduğunu görüşü yaygın olsa da; kırışıklıklar, kanser ve yaşlanma gibi bu tehlikeli sonuçları yaratmada UVA’nın da etkili olabileceği düşünülüyor. Morötesi ışıma ile ilgili ilginç şeylerden birisi de, değişik yüzeyler tarafından yansıtılabiliyor olması. Bu yansımalar, morötesi ışığa maruz kalındığında ortaya çıkacak etkileri artırıyor. Mesela kar, morötesi ışığı %90’a kadar yansıtabiliyor. Güneşli bir günde kayak yapanların vücutlarında oluşan güneş yanıklarının ve kar körlüğünün sebebi de bu. Kum da UVB ışığı %20’ye kadar yansıtabiliyor. Yani deniz kenarındayken daha çok morötesi ışığa maruz kalıyorsunuz.

Diğer bir taraftan da, bazı maddeler morötesi ışımayı kısmen ya da tamamen absorbe edebiliyorlar. Cam da bu maddelerden birisi. Cam çeşitlerinin birçoğu, morötesi ışığı iyi absorbe eder. Cam sera içerisinde güneş yanığı olmamanın sebebi de budur. Birçok güneş kremi içerisinde de, güneş ışığını absorbe eden kimyasallar kullanılır.

Güneş ışığı ile ilgili bilgilerin yer aldığı bu kısa girişin ardından, neden bronzlaştığımız sorusunun cevabına geçebiliriz. Çünkü bronzlaşma, derimizin morötesi ışığa verdiği tepkiden kaynaklanıyor. Güneş ışığına ışığa maruz kalan melanositler, bu ışığın içerisindeki morötesi ışığa tepki olarak melanin pigmenti üretiyor. Yani morötesi ışığın melanin üretimini tetiklediğini söyleyebiliriz. Vücudumuzun tepki olarak ürettiği melanin pigmenti, güneş ışığı içerisindeki morötesi ışığı absorbe edebiliyor ve hücreleri morötesi ışığın zararlarından koruyor.

Melanin üretimi de tabii ki bir anda gerçekleşmiyor ve belirli bir zaman alıyor. Bu sebeple, insanların çok büyük bir çoğunluğu tek günde bronzlaşamaz. Yani melanositleri aktifleştirmeniz için kendinizi morötesi ışığa kısa bir süre maruz bırakırsınız ve melanositlerin melanin üretimi saatler sürer. Bu süreci 5 ila 7 gün arasında tekrar ettiğinizde, hücrelerinizin içerisindeki pigment sayısı koruyucu seviyeye gelir.

Bir önceki paragrafın genel olarak beyaz ırk için geçerli olduğunu söyleyebiliriz. Fakat, farklı birçok ırkta, melanin üretimi devamlıdır. Bundan dolayı, deride her zaman bir ölçüye kadar pigment bulunur. Bu ırklarda deri kanseri riski de oldukça düşüktür. Çünkü hücrelerdeki melanin seviyesi, morötesi ışığa karşı sürekli bir koruma sağlar.

Melanositler aslında iki farklı pigment üretirler, eumelanin(kahverengi) ve phaeomelanin(sarı ve kırmızı). Kızıl saçlılar daha çok phaeomelanin ve daha az eumelanin üretmeye yatkındırlar. Bu sebeple, iyi bronzlaşamadıklarını söyleyebilir. Aynı zamanda albinolarda da, tirozinaz enzimi olmadığından melanin üretiminin kimyasal yolu işlemez. Albinoların saçlarında, derilerinde ya da irislerinde melanin bulunmaz.

Melanosit uyarıcı hormon da(MSH) hipofiz bezi tarafından üretilir. MSH kan dolaşımı boyunca akıp melanositlere ulaşarak melanin üretiminin gerçekleşmesi için uyarımda bulunur. Örneğin eğer bir insana yüksek dozda MSH enjekte ederseniz, esmerleşmeye başladığına şahit olabilirsiniz.


Bu yazı HowStuffWorks’de yayımlanan How Sunburns and Sun Tans Work yazısından derlenmiştir.

Orjinal yazı: Bilimfili

Bilim İnsanları, Kızılötesi Işığı Görebilen Fareler Yarattılar!

Beyin, harika bir bilgi işlemcisidir ancak bilginin nereden geldiğini önemsemez. Görme, koku alma, tatma, duyma ve dokunma; beynimizle iletişim halinde olan bizim biricik duyularımız, basit elektrik sinyallerine dönüşür. Her ne kadar dünyayı ışık hüzmeleri ve ses dalgaları halinde algılıyor olsak da bunların hepsi tek bir tonda işlenir: elektriksel ton. Kısacası, bütün duyularımız beynimiz için aynıdır. Bu tuhaf görüş, çok daha tuhaf olan “duyusal ikame” deneylerine öncülük etmiştir.
1969 yılında, nöroplastisite öncüsü Dr.Paul Bach-y-Rita, 1950’lerin bilimkurgu ustası Isaac Asimov’un aklından çıkmış gibi görünen bir görme ikame düzeneği (vision replacement setup) tasarladı. Korkutucu dişçi koltuğunun arkasına sıra sıra monte edilmiş, toplamda 400 tane titreşimli ince uç (needle) düşünün. Görme engelli denekler bu koltuğa uzanıp sırtlarındaki hassas derilerini bu titreşim matrisine (vibration matrix) yaslıyorlar. Koltuğun koluna yakın yere yerleştirilmiş basit bir kamera, koltuğun önündeki nesnelerin siyah beyaz görüntülerini yakalıyor. Kameradaki görüntü, titreşimli uçlar yardımıyla 400 piksellik bir “görüntü”ye (bir tür basınç haritasına) dönüştürülüyor. Her kamera pikseli, titreşim matrisindeki bir uca karşılık geliyor; siyah pikseller karşılık geldiği uç tarafından güçlü dürtü oluştururken beyaz pikseller hafif bir dokunuş sergiliyor. Bu düzenek her ne kadar büyük, aksak ve yavaş olsa da işe yaradı.
Eğitimden sonra görme engelli denekler karalama, şekil ve yüzleri ayırt etmekle kalmayıp üçten fazla insanı ve kısmen belirsiz hatlı nesneleri içeren karmaşık görsel resimleri de sadece derileriyle analiz edebildiler. Ancak esas olay şu: Titreşimler deneğin duyu korteksinde değil de görsel korteksinde işlendi. Bir şekilde deneğin işlevsiz görsel prosesi, dokunma duyusunu sanki kendininmiş gibi sahiplendi. Pekiyi, bunun sonucunda ne oldu? Denekler derileriyle “gördüler”.
O zamandan beri duyu ikamesi, görme engellilerin müzik yardımıyla görmesini, sesler yardımıyla okumasını ve motor hareketleri engelli olanların ilgili bilgileri dilleriyle algılamasını sağlamıştır. Yine de bu deneyler hep bir ya da birden fazla duyusu hasarlı olan hastalarda uygulandı. Duke’teki sinirmühendisleri Dr. Eric Thomson ve Dr. Miguel Nicolelis bunun üzerine şunu sordular: Pekiyi, ya biz bu deneyleri sağlıklı bir beyne yapsak? İlave duyular “programlayabilir” miyiz?
“Ne olacaksa olsun!” diye düşündü Thomson, “Hadi, şu farelere kızılötesi görüş verelim.”
(Kızılötesi) Işık Olsun!
Thomson, sadece birkaç milimetre genişliğindeki çift modüllü küçük implantlar tasarlayarak deneyine başladı. İmplant, kafaya bağlı kızılötesi detektörün çıktısını; farenin özellikle bıyıklarca algılanan dokunma sinyallerine cevap veren, duyu korteksine yerleştirilmiş elektrikli mikrostimülatörün mikrodizisine iletti. Daha sonra, susuz bırakılmış fareleri, yuvarlak alandaki üç su ağızlığını birbirinden ayırt edecek şekilde eğitti. Her ağızlık rastgele bir düzende ışık yayıyordu; su ödülünü almak için farelerin yapması gereken tek şey, ışık yanan ağızlığa gitmeleriydi. Fareler oyunun kurallarını öğrendiğinde Thomson ışıkları kızılötesiyle değiştirdi.
Farenin kafasının üstüne yerleştirilmiş detektör tarafından algılanan farklı şiddetteki kızılötesi ışıklar farklı bir değer alıyor ve farklı bir elektriksel simülasyon modeline dönüştürülüyordu. Sonrasında bu modeller, istenen akım darbelerini gerçek zamanda duyu korteksine ileten mikrostimülatöre gönderiliyordu. Thomson şöyle diyor:
“Hayvanların, ikili açık-kapalıdan ziyade kademeli kızılötesi şiddetini işleyebilmesini istedik. Sonuçta görülebilir ışık da ya hep ya hiçten ibaret değil.”
İlk başta farelerin kafası karıştı, uyartıya karşılık olarak kızılötesi kaynağına gideceklerine oturup sanki dışarıdan bir şey dokunmuş gibi bıyıklarını temizlemeye başladılar; aslında duyu korteksleri akımla uyarıldığı için dışarıdan bir şey bıyıklarına dokunmuş gibi hissetmeleri normaldi. Aşağı yukarı bir aylık eğitimin ardından altı hayvanın hepsi kızılötesi başlıklarına alışmış, kızılötesiyle yemek aramayı öğrenmişlerdi. Thomson şöyle diyor:
“Farelerin kızılötesi dalgaların nereden geldiğini daha iyi algılamak için kafalarını sağa sola uzattıklarını görebiliyorduk. Bu durum, %70’i aşkın seferde su dolu ağızlıklardan doğru olanı seçmelerini sağladı.”
Daha sonraki testler, farelerin bıyıklarına “dokunulma bilgisi”ni gayet iyi bir biçimde algılayabildiklerini, yeni kızılötesi “duyu”larının eski duyularını köreltmediğini doğruladı. 2013 yılında Nature Communications‘da yayınladıkları çalışma raporunda Thomson şunları yazdı:
“Bilebildiğimiz kadarıyla bizler, türlerin algı dağarcığını yakın kızılötesi elektromanyetik spektrumu içerecek şekilde genişletebilen ilk kortikal nöroprotezi yapmış olduk.”
Şimşek Hızında Duyu Birleşmesi
Çalışma baştan beri mükemmel olsa da Thomson bununla yetinmedi. Bir kere, farelerde yalnızca bir adet kızılötesi detektör vardı, bu da derinlik algısını oldukça kısıtlıyordu. Diğeri de fareler teknik olarak kızılötesini “görmüyor”, “hissediyor”lardı çünkü bütün işi yapan duyu korteksleriydi.
Chicago’daki 2015 Society for Neuroscience’ın yıllık konferansında bildirdiği üzere Thomson yeni deney serisinde, farelerin beynine 360 derecelik panoramik kızılötesi algı sağlayan üç ilave elektrot yerleştirdi.
Bu ilaveyle birlikte hayvanların kızılötesine adapte olmalarında neredeyse 10 katlık artış görüldü. Su arama deneyi yeniden uygulandığında farelerin düzeneği öğrenmesi ilk deneydeki tek implantlıların 40 günlük sürecine kıyasla yalnızca 4 gün sürdü. Thomson, Science News’a şunları söyledi:
“Doğrusu bu şaşırtıcıydı. Beyinlerinin yalnızca bir bölgesinde değil de her yerinde birçok uyartı olmasının farelerin kafasını karıştıracağını düşünmüştüm.”
Ama en çok şaşılacak an, implantları farelerin görsel korteksine yeniden yerleştirdiği zaman yaşandı: Bu sefer, hayvanların su deneyini öğrenmesi yalnızca bir gün sürdü.
Kızılötesi trafiğin görsel kortekslere yeniden yönlendirilmesi neden öğrenmeyi hızlandırdı? Thomson tam olarak emin değil ama bu olanların kızılötesi ışığın doğasıyla ilgili olduğunu düşünüyor. Nihayetinde, görsel korteksimiz, dalga boyuna baktığımızda kızılötesine çok benzer olan görünür ışığı algılamaya elverişlidir. Belki de görsel korteksimiz, duyu korteksimize nazaran kızılötesini algılamakta “özelleşmiş”tir. Thomson diyor ki:
“Daha derine inmeden ve görsel sistemin farklı seviyelerindeki plastisitenin değişimlerine bakmadan kesin bir şey söyleyemeyiz. Yine de şunu biliyoruz ki görsel korteks hem görünür ışığı hem de kızılötesini aynı anda algılayabiliyor.”
Her ne kadar biyo-sanalkorsanlar (biohacker) insanların görünür ışık spektrumunu yakın kızılötesine çıkarmakla uğraşsa da duyuları artırmak şu an için hayvanlarla sınırlı. Thomson’ın çalışması, “kızılötesi göz” donanımının işe yaraması durumunda beynimizin buna çabucak adapte olacağını gösteriyor. Thomson şöyle diyor:
“Doğrusu ben hala hayretler içerisindeyim. Beyin, her daim yeni bilgi kaynaklarına aç ama tamamıyla yabancı olan bu türleri çok kısa zamanda absorbe edebilir ki bu durum nöroprotez ve artırma (augmentation) alanları için inanılmaz büyük bir nimet. Çalışmamız, duyu kortikal protezlerin normal nörolojik fonksiyonları yeniden kazandırmasına ilaveten memelilerdeki doğal algı kabiliyetini arttırmak için de kullanılabileceğini öne sürüyor. İşte ben bu nedenle çok heyecanlıyım.”
 
Düzelten: Şule Ölez (Evrim Ağacı)
 
Kaynak:
  1. SingularityHub
  2. Striem-Amit E1, Cohen L, Dehaene S, Amedi A. Reading with sounds: sensory substitution selectively activates the visual word form area in the blind. Neuron. 2012 Nov 8;76(3):640-52. doi: 10.1016/j.neuron.2012.08.026.
  3. Eric E. Thomson, Rafael Carra & Miguel A.L. Nicolelis Perceiving invisible light through a somatosensory cortical prosthesis Nature Communications Received 24 Aug 2012 | Accepted 15 Jan 2013 | Published 12 Feb 2013 DOI: 10.1038/ncomms2497

Daha Verimli İlaç Taşıma Sistemleri İçin Kızılötesi Işın

Bazı ilaç rejimleri (hangi ilaç veya ilaçların ne sıklıkla ve hangi dozajda kullanılacağını öngören düzen), özellikle de tümörleri yok etmek üzere dizayn edilenler son derece zarar verici ve rahatsız edici yan etkiler üretebiliyor. İstenmeyen semptomlar çoğunlukla ilacın veya ilaçların ihtiyaç duyulmayan bölgelere de gitmesinden ve sağlıklı hücrelere zarar vermesinden kaynaklanabiliyor.

Elbette bu bir risk ve her tedavide hepimiz bu riski göze alıyoruz. Ancak bu riski de minimum etmek üzere Kanada, Quebec’ten araştırmacılar, yalnızca yakın-kızılötesi ışık etkisi altında kaldığında ilacı salabilen nanoparçacıklar geliştirdiler. Doktorlar ilacın salınmasını istedikleri bölgeye bu ışık hüzmesini yollayarak tam da istedikleri bölgede ilacın salınmasını sağlayabilecekler. Araştırmanın tüm detayları Amerikan Kimya Topluluğu’nun prestijli dergisiJournal of the American Chemical Society‘de yayımlandı.

Yıllardır bilim insanları bölgesel veya başka bir deyişle yerel tedaviler geliştirerek ilaçların yukarıda sözü geçen nedenden ötürü beraberlerinde getirdikleri yan etkilerden kurtulmak için mücadele edip duruyorlar. Bugüne kadar ışığa, sıcaklığa , ultrasona ve pH değişikliklerine tepki verebilen ilaç iletim sistemleri geliştirildi. Bu uygulamalardan gelecek vadeden bir tanesi de morötesi (ultraviyole) ışınlara duyarlı ilaç taşıma malzemeleriydi.

Işık spektrumunun bu kısmına ait olan ve malzemenin üzerine gönderilen ışın atımı malzemenin içinde bulundurduğu ilacı hedef bölgeye (tıpkı kargo taşıyan bir kurye gibi) bırakıyor. Ancak morötesi ışığın belli sınırları bulunuyor. Örneğin morötesi ışık ışınlarının kendileri de kanserojen ve vücudun iç kısımlarına ulaşabilecek güçte de değiller.

Buna karşılık yakın kızılötesi ışık bir canlı dokuya 1-2 santimetre derinliğe ulaşabilecek kadar penetre edebilir ve nispeten de daha güvenilir bir alternatif; ancak ne var ki ışığa duyarlı ilaç-taşıyıcıları bu ışık türüne tepki vermiyorlar. McGill University’den mühendis profesör Marta Cerruti ve araştırmacı arkadaşları ikisinin de iyi olan taraflarını kullanabilmeyi hedefledi ve bu iki ışığı bir araya getirerek muhtemel bir çözüm şekli yarattı .

Araştırmacılar, yakın kızılötesi ışığı ultraviyole ışığa çevirebilen nanoparçacıklarla yola çıktılar ve daha sonra bu nanoparçacıkları morötesi ışığa duyarlı hidrojel ile kaplayarak içlerine de ilaç moleküllerine refakatçi olması için flüoresan protein (bu protein çeşitleri belli ışıklar altında -rengine göre- parlayarak araştırmacılara bilgi verebilmekte, hücre içi görüntülemeyi kolaylaştırmaktadır) aşıladı. Daha sonra yakın-kızılötesi ışına maruz kalan nanoparçacıklar bu ışık ışınlarını ani olarak morötesi ışınlara çevirerek hidrojel kabuklarının açılmasını sağlıyor ve daha sonra yüklerini dışarı salıyor.

Araştırmacılar bu kargo sistemi yalnızca ilaçları bölgeye ulaştırmak için değil, aynı zamanda tanı koyabilme, bölgeyi görüntüleyebilme, hastalık teşhisi ve bölgeyle ilgili başka bilgilerin alınabilmesi için de kullanabilmek üzere dizayn etmeye çalıştıklarını belirtti.

 


Kaynak : Bilimfili, Ghulam Jalani, Rafik Naccache, Derek H. Rosenzweig, Lisbet Haglund, Fiorenzo Vetrone, Marta Cerruti.Photocleavable Hydrogel-Coated Upconverting Nanoparticles: A Multifunctional Theranostic Platform for NIR Imaging and On-Demand Macromolecular Delivery. Journal of the American Chemical Society, 2016; DOI: 10.1021/jacs.5b12357