Yaşlanmayı Kaçınılmaz Kılan Biyoloji Değil Fizik

Yaşlanmayı Kaçınılmaz Kılan Biyoloji Değil Fizik

Bedenimizdeki hücrelerin her biri yollar, ulaşım araçları, kütüphaneler, fabrikalar, enerji santralleri ve atık dönüşüm birimleri ile dolu olan kalabalık şehirlere benzer. Bu şehrin çalışanları, besini metabolize eden, çöpü atan ve DNA’yı onaran protein makineleridir. Proteinlerin kurduğu cambaz ipleri üzerinde yürüyen moleküler makineler tarafından kargolar getirilip götürülür. Tüm bu makineler kendi görevlerini yerine getirmeye çalışırken, kendilerine saniyede trilyonlarca kez rastgele çarpan binlerce su molekülü ile çevrilidirler. Fizikçilerin örtük bir dille “ısısal hareket” adını verdikleri şey işte budur. Onun yerine “şiddetli ısısal kaos” dense de olurmuş.

İyi niyetli bir moleküler makinenin böylesine katlanılmaz koşullar altında nasıl iyi iş çıkarabildiğini anlamak kolay değil. Yanıt kısmen şöyle: Hücrelerimizdeki protein makineleri, minik çark mandalları gibi su bombardımanından elde ettikleri rastgele enerjiyi, hücrenin işlemesini sağlayan net bir şekilde yönlendirilmiş harekete dönüştürür. Yani kaostan düzenyaratırlar.

Peter M. Hoffmann’ın Yaşamın Kökeni adlı kitabında moleküler makinelerin hücrelerimizde düzeni nasıl sağladıkları anlatılır. “İlgilendiğim temel konu, yaşamın kaosun içine sürüklenmekten nasıl kaçınabildiğiydi. Kitabım yayımlandıktan kısa süre sonra biyolojik yaşlanma üzerinde çalışan araştırmacılar benimle temas kurdu. İlk önce aradaki bağlantıyı göremedim. Yaşlanmaya ilişkin bildiğim tek şey, kendi bedenimde gözlemlemek durumunda kaldığım süreçti,” diyor Hoffmann.

Kitabında, yaşayan moleküler makinelerde ısısal kaosun rolünü vurgulamış olmasının, yaşlanma araştırmacılarının bunu biryaşlanma nedeni olarak düşünmelerine neden olduğunu fark eden Hoffmann, ısısal hareketin kısa vadede yararlı fakat uzun vadede zararlı olduğunu anlamış. Sonuçta dışarıdan enerji girdisi olmadan, rastgele ısısal hareket düzeni bozma eğiliminde olur. Bu eğilim termodinamiğin, her şeyin yaşlandığını ve çürüdüğünü söyleyen ikinci yasasında belirtilmiştir. Binalar ve yollar aşınır; gemiler ve raylar paslanır; dağlar ufalanıp denize karışır. Cansız yapılar ısısal hareketin yarattığı tahribat karşısında çaresizdir. Yaşam ise farklıdır: Protein makineleri sürekli olarak hücreleri onarıp yeniler.

Bir anlamda yaşam, biyoloji ile fiziği bu ölüm-kalım savaşında karşı karşıya getirir. Peki canlılar neden ölür? Yaşlanma, biyolojinin fizik karşısındaki nihai yenilgisi midir; yoksa biyolojinin kendisinde var olan bir süreç midir?

Cansız nesnelerin fiziksel yapısındaki bozulmalar sürekli artarken, canlılardaki moleküler makineler sürekli onarım yapar.

Biyolojik Çürüme mi, Fiziksel Yıpranma mı?

Yaşlanma üzerine yapılan çağdaş incelemelere temel oluşturacak bir çalışma varsa, o da P.Medawar’ın 1952 tarihinde basılanBiyolojinin Çözülemeyen Problemlerinden Biri adlı kitabıdır. Nobel ödüllü biyolog Medawar, bu kitapta yaşlanmaya ilişkin birbirine karşıt iki açıklamadan söz eder: Biyolojik gereklilik (içsel yaşlanma) veya yinelenen gerilimin biriken etkisi (yıpranma). İlki sorumluluğu biyolojiye, ikincisi ise fiziğe yöneltir.

İçsel yaşlanma düşüncesine göre yaşlılık ve ölüm, genç kuşaklara yer açmak için evrim tarafından zorunlu kılınmıştır. İçimizde bir saat vardır ve ömrümüzün geri sayımını yapar. Böyle saatler gerçekten de vardır. En ünlüleri ise telomerlerdir. Bu ufak DNA parçaları, her bir hücre bölünmesinde kısalır. Telomer incelemelerinde karşıt görüşler vardır ve telomer kısalmasının yaşlanmanın nedeni mi, yoksa sonucu mu olduğu netlik kazanmamıştır. Telomerler sabit miktarlarda kısalmazlar ama her hücre bölünmesinde kaybolan bir minimum miktar vardır. Eğer hücre başka yollarla hasar gördüyse, telomerler daha hızlı kısalırlar. Araştırmacıların çoğu telomer kısalmasının yaşlanma nedeni değil, belirtisi olduğunu düşünmektedir.

Medawar’ın kendisi “yıpranma” kuramını savunur; yani yaşlanmaya fizik açısından bakar. Bunun için iki neden öne sürer. Birincisi, doğal seçilimin yaşlanmayı seçtiğini görmenin zor olduğunu, çünkü canlıların ileri yaşlarda üreyemediğini ve doğal seçilimin de üreme oranlarındaki farklarla biçimlendiğini söyler. İkincisi, nüfus artışını kontrol etmek için yaşı ilerleyen bireylerin yaşamlarına etkin biçimde son vermenin gereksiz olduğunu, çünkü rastgeleliğin zaten bu işin icabına bakacağını belirtir.

Medawar, yaşlanmaya neden olacak biyolojik bir içsel saat olmasının gereksizliğini açıklamak için cansız bir nesne örneği verir: Laboratuvardaki deney tüpleri. Bu tüplerin zaman zaman kaza eseri kırıldığını varsayalım. Tüplerin toplam sayısını sabit tutmak için her hafta yeni bir parti geliyor olsun. Bir kaç ay geçtikten sonra ortada kaç tane yeni ve kaç tane eski deney tüpü olur? Yanlışlıkla kırılma olasılığının yaştan bağımsız olduğunu varsayarsak (gayet mantıklı bir varsayım bu) ve deney tüplerinin sayısına karşılık her tüpün yaşını gösteren bir grafik çizersek, kaydırağa benzeyen iç bükey bir üstel bozunma eğrisi elde ederiz. Bu “yaşam eğrisi”nin tepesinde sert bir düşüş vardır ve tabanı düzdür.

Rastgele kırılan deney tüpleri için bilgisayar modellemesinden elde edilen yaşam grafiği ve üstel uyum eğrisi (kırmızı çizgi). Dikey eksen, her yaş grubundaki deney tüplerinin sayısını gösteriyor. Yatay eksen, deney tüplerinin yaşını hafta ölçeğinde gösteriyor.

Her ne kadar deney tüpleri yaşlanmıyor olsa da (yaşlı tüpler genç tüplerden daha kolay kırılıyor olmasa da), sabit kırılma olasılığı yaşlı deney tüplerinin sayısını önemli ölçüde azaltır. Şimdi insanların da tıpkı deney tüpleri gibi herhangi bir yaşta ölme olasılıklarının eşit olduğunu varsayalım. Yaşlı insanların sayısı yine de az olurdu. Olasılık eninde-sonunda onları yakalardı.

Sorun şu ki, insan toplulukları için çizilen yaşam eğrileri, Medawar’ın deney tüpleri için çizdiğine benzemiyor. Tepede düz başlıyor; yani genç yaşta ölüm sayısı az oluyor (doğum sırasındakiler hariç). Ardından belli bir yaşta eğri aniden düşüşe geçiyor.Böyle bir eğri elde etmek için Medawar’ın deney tüpü modeline bir başka varsayımın daha eklenmesi gerekir: Deney tüpleri zaman içinde küçük çatlaklar biriktirmektedir. Bu da onların kırılma riskini arttırır. Bir başka deyişle, yaşlanmaları gerekir. Eğer kırılma riski üstel olarak artıyorsa, Gompertz-Makeham Yasası ile karşı karşıyayız demektir. Bu yasa insanlar için çizilen yaşam eğrilerine oldukça iyi uyar. Deney tüpleri için konuşacak olursak, bu yasa hem sabit hem de üstel olarak artan kırılma riskini kapsar. Üstel artış insanlarda gözlemlenmiştir. 30 yaşından sonra ölüm riski, her 7 senede ikiye katlanır.

Üstel Artışın Nedeni Ne?

Hücrelerimizde oluşan hasarın tek nedeni ısısal hareket değildir. Düzenli olarak sürdürülen bazı süreçler, özellikle de mitokondrilerimizin metabolizması kusursuz değildir ve bir takım radikaller üretir. Radikaller, yüksek ölçüde reaktif atomlar olup, DNA’ya zarar verirler. Isısal gürültü ve serbest radikal oluşumu, hücre hasarının ardında yatan temel nedenlerdir. Bir hasar gerçekleştiğinde hücre onarılabiliyorsa onarılır; hasar onarılamayacak boyutta ise hücrede apoptozis olarak adlandırılan intihar davranışı tetiklenir. Genellikle yerine bir kök hücre konur.

Fakat sonuçta hasar birikimi olur. DNA ancak hiç bozulmamış bir örneği varsa onarılabilir. Hasarlanmış proteinlerin katlanışları bozulur ve birbirlerine yapışmaya başlayarak birikinti oluştururlar. Hücre, savunma mekanizması ile intihar mekanizmasının ortasında kalır. Yaşlı hücreler organlarda birikmeye başlayarak iltihaba yol açar. Kök hücreler etkinleşmez ya da tükenmiştir. Mitokondriler hasarlandığı için DNA onarımı yapacak moleküler makinelere güç sağlayacak olan enerji desteği azalır. Bu kötücül bir çevrimdir; teknik jargonda pozitif geri bildirim ilmeğidir. Matematiksel olarak pozitif geri bildirim ilmekleri riskte üstel bir artış doğurur. Bu da insan yaşam eğrilerinin şeklini açıklar.

Bilimsel literatür yaşlanmaya ilişkin çok sayıda açıklama ile doludur: Protein birikimi, DNA hasarı, iltihap, telomerler. Fakat bunlar temelde yatan bir nedenin sonuçlarıdır: Isısal ve kimyasal aşınmaya bağlı hasar birikimi. Isısal hasar etkilerinin gerçekten de yaşlanmaya neden olduğunu kanıtlamak için farklı içsel ısılarla yaşayan insanları gözlemlememiz gerekir. Bu mümkün değildir ama anlık zarar vermeden içsel ısıları değiştirilebilecek başka canlılar vardır. Geçtiğimiz günlerde Nature dergisinde yayımlanan bir makalede, Harvard Tıp Fakültesi’nden bir grup araştırmacı C. elegans türü yuvarlak solucanlarda yaşlanmanın ısıya bağlılığını belirlediklerini açıkladı. Basit ve üzerinde fazlasıyla çalışıldığı için iyi tanınan bir canlı olan bu solucan türünde, hayatta kalma eğrisinin şeklinin temelde aynı kaldığı fakat ısı değiştikçe esnediği veya büzüldüğü saptandı. Düşük sıcaklıklarda büyütülen canlıların hayatta kalma eğrileri esnerken, yüksek sıcaklıklara maruz kalanların ömrü daha kısa oluyordu. Ayrıca esneme faktörünün ısıya bağlılığı, bilimcilere oldukça tanıdık olan bir desen izliyordu: Kimyasal bağ kırılmalarının, rastgele ısısal hareketin ısısına olan bağlılığının deseniydi bu.

Peter Hoffmann konuya ilişkin deneyimlerini şöyle aktarıyor: “Bağ kırılması ile yaşlanma arasındaki olası bağlantıyı, ben de kendi laboratuvarımda gözlemlemiştim. Gompertz-Makeham Yasası’na ilk rastladığımda, tuhaf bir biçimde tanıdık gelmişti. Laboratuvarımda iki atom arasındaki çok ufak kuvvetleri ölçebilen bir atomik kuvvet mikroskobu kullanarak, tek tek moleküler bağların bozulmama olasılıklarını inceliyorduk. Tipik bir deneyde, bir proteini düz bir yüzeye iliştiriyor ve başka bir proteini de küçük bir manivelalı yayın ucuna tutturuyorduk. Proteinlerin birbirlerine bağlanmasına izin verip, ardından yayı yavaş yavaş çekiyorduk. Böylece iki moleküle giderek artan bir kuvvet uygulamış oluyorduk. Nihayetinde, iki molekül arası bağ kopuyordu ve biz de bu kırılmayı sağlamaya yetecek kuvveti ölçüyorduk. Bu, ısısal hareket tarafından tetiklenen bir rastgele süreçti. Deneyi her yineleyişimizde, kırma kuvveti farklı çıktı. Ama “bağların bozulmama olasılığı – uygulanan kuvvet” grafiği, tıpkı insanlar için çizilen “yaş – hayatta kalma” grafiğine benziyordu. Bu benzerlik C. elegans sonuçları ile uyumluydu; ki bu da protein bağlarının kırılması ile yaşlanma arasında ve yaşlanma ile ısısal hareket arasında bir bağlantı olabileceğini akla getiriyordu.”

Sol: Gompertz-Makeham uyum çizgisi ile görülen insan yaşamı grafiği. Sağ: Artan kuvvete maruz bırakılan tekil protein bağları için bozulmadan kalma grafiği. İki eğrinin matematiksel biçimi özdeştir.

Yaşlanmak Bir Hastalık mı?

Yaşlanma üzerinde çalışan araştırmacılar arasında, yaşlanmanın bir hastalık olarak sınıflandırılıp sınıflandırılamayacağına ilişkin hararetli bir tartışma var. Belirli hastalıklar, hücresel sistemler ya da moleküler bileşikler üzerinde çalışan araştırmacıların çoğu, kendi çalışma alanlarının “yaşlanmanın nedeni” sıfatını aldığını görmek istiyor. Fakat olasılıkların sayısının büyüklüğü, tam olarak bu olasılığın tersini ortaya koyuyor. Hepsi birden yaşlanmanın nedeni olamaz.

Hücresel yaşlanmayı ilk keşfeden kişi olan Leonard Hayflick, “Biyolojik Yaşlanma Artık Çözülmemiş Bir Problem Değil” şeklinde etkileyici bir başlık taşıyan makalesinde şöyle demişti: “Yaşlanmaya ilişkin tüm çağdaş kuramların temelindeki ortak payda, moleküler yapıdaki yani işlevdeki değişimdir.” Hayflick’e göre nihai sebep “moleküler sağlamlıkta artan kayıp veya moleküler düzensizliğin artışı” idi. Bu sağlamlık kaybı ve düzensizlik artışı, doğası gereği kendini rastgele ve dolayısıyla farklı kişilerde farklı şekillerde gösteriyordu. Fakat nihai sebep hep aynıydı. Eğer verilerin bu yorumu doğruysa, o zaman yaşlanma nano ölçekteki termal fiziğe indirgenebilecek bir doğal süreç demektir; bir hastalık değildir.

1950’li yıllara kadar insan ömrünün uzatılması konusunda atılan adımlar neredeyse bütünüyle enfeksiyon hastalıklarının (yaştan bağımsız bir sabit faktör) safdışı bırakılmasına yönelikti. Sonuç olarak ortalama insan ömrü ciddi bir artış gösterdi; bununla birlikte maksimum yaşam süresi aynı kaldı. Üstel olarak artan bir risk, eninde-sonunda sabit riskteki azalışları geride bırakacaktır. Sabit riski düşürmeye çalışmak yararlıdır; ama bir yere kadar: Sabit risk çevreselken (kazalar ya da enfeksiyon hastalıkları gibi), üstel artan risklerin büyük bölümü içsel düzenek kaynaklıdır. Kanser ya da Alzheimer gibi hastalıkların tedavi edilmesi yaşam sürelerimizi önemli ölçüde arttırsa bile bizi ölümsüz yapmayacak, hatta maksimum yaşam süremizde fazla bir artış yaratmayacaktır.

Tabi bu yapacak hiçbir şey olmadığı anlamına gelmiyor. Yaşlanmada gelişen belirli moleküler değişimlerin daha yakından incelenmesi gerekiyor. Böylece dağılmaya ilk olarak başlayan kilit moleküler bileşiklerin ne olduğunu anlayabilir ve bu dağılışın çığ etkisi yaratıp yaratmadığını görebiliriz. Eğer böyle kilit bileşikler varsa, yenileme ve onarım için açık hedefler belirlenmiş olur. Nanoteknoloji, kök hücre teknolojileri ya da gen düzenleme sayesinde gerekli onarımlar gerçekleştirilebilir. Bu kesinlikle denemeye değer. Elbette şunu akılda tuıtmak kaydıyla: Biyolojik bozulmalar bazen onarılabilir ama fiziksel yasalar asla yenilemez.

 


Kaynak:

  • Bilimfili,
  • Nautilus, “Physics Makes Aging Inevitable, Not Biology”
    < http://nautil.us/issue/36/aging/physics-makes-aging-inevitable-not-biology >

Hasar Gören Sinir Hücreleri Taşınabilir Mitokondrilerle Onarılacak

Rockefeller Üniversitesi’nden bir grup araştırmacı, mitokondrilerin nöronal aksonlardaki taşınımı yükseltildiği takdirde, farelerin sinir hücelerinin yaralanma sonrası onarım becerilerinde artış olduğunu saptadı. Sonuçları Journal of Cell Biology dergisinde yayımlanan makale ile duyurulan çalışmanın, hastalık ya da yaralanma sonucu nöronları hasar gören insanlarda sinir hücrelerinin yeniden oluşumunu tetikleyecek stratejiler geliştirilmesine yardımcı olacağı ifade ediliyor.

Nöronların, vücutta uzun mesafelere yayılan aksonlarını genişletebilmeleri için büyük miktarda enerjiye gereksinimleri olur. Bu enerji mitokondriler tarafından ATP (adenozin trifosfat) biçiminde sağlanır. Mitokondriler, hücre içi enerji santralleridir. Gelişim sırasında mitokondriler aksonlarda ATP gereken yerlere taşınırlar. Ancak büyüme çağını geride bırakan yetişkinlerde, mitokondriler çok daha az hareketlidir, çünkü olgun nöronlar sintafilin (İng.syntaphilin) adı verilen bir protein üretirler. Sintafilin mitokondrileri bulundukları yere sabitler. Araştırmacı Zu-Hang Sheng ve çalışma arkadaşları, mitokondri taşınımındaki bu azalışın, yetişkinlerde yaralanma sonrası nöronların yenilenememesini açıklayıp açıklayamayacağını anlamaya karar verdi.

Sheng ve ekip arkadaşı Bing Zhou, olgun fare aksonları zarar gördüğünde yakında bulunan mitokondrilerin de hasarlandığını ve sinir yenilenmesi için gereken ATP desteğini veremediklerini saptadı. Bilimciler sintafilini sinir hücrelerinden genetik olarak kaldırdıklarında ise mitokondriyel taşınım arttı. Böylece hasar gören mitokondrilerin yerine ATP üretebilen sağlam mitokondriler gidebildi. Sintafilini olmayan olgun nöronların bu şekilde yaralanma sonrası yenilenebildikleri görüldü.

“Hücre içinde ve deney tüpünde gerçekleştirdiğimiz çalışmalar, mitokondriyel taşınımı arttırmak yoluyla enerji eksikliğinin giderilerek, nöronların yenilenmesinin sağlanabileceğini gösterdi. Bu yaklaşımdan yararlanarak merkezi ve çevresel sinir sistemi hasarlarının iyileştirilmesini sağlayacak stratejiler geliştirilebilir,” diyor Sheng.

Aşağıdaki videoda aksonlar hasar gördükten sonra, yakında bulunan mitokondrilerin ATP üretemez duruma geldikleri görülüyor. Bu mitokondrilerin rengi sarıdan (sağlıklı) yeşile (hasarlı) dönüyor (Telif: Zhou et al., 2016).


Kaynaklar:

  • Bilimfili,
  • Eurekalert, “Mobilizing mitochondria may be key to regenerating damaged neurons”
    < http://www.eurekalert.org/pub_releases/2016-06/rup-mmm060716.php >
  • Science Alert, “Scientists are using mobile mitochondria to repair damaged nerve cells”
    < http://www.sciencealert.com/damaged-neurons-could-be-fixed-with-mobile-mitochondria-scientists-say >

İlgili Makale: Bing Zhou, Panpan Yu, Mei-Yao Lin, Tao Sun, Yanmin Chen, and Zu-Hang Sheng Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits The Journal of Cell Biology Published June 7, 2016 The Rockefeller University Press, doi: 10.1083/jcb.201605101

Mitokondri Bulundurmayan İlk Ökaryot Hücre Keşfedildi

Her bir dokusu ve organı, o organın görev ve işleyişini sürdürebilen, gerçekleştirebilen birbirinden farklı hücrelerden oluşmuştur. Ancak her ne kadar farklı olsalar da, temelde aynı organelleri bulunduran hücrelerimiz, çoğunlukla farklı genleri aktifleştirdikleri, inaktifleştirdikleri, bir takım genlerden daha fazla veya daha az protein sentezledikleri için birbirlerine göre farklılaşırlar. Elbette bu özet hücrelerin birbirinden farklılıklarını bütün detayları ile anlatmıyor, keza bu yazıda ökaryot tüm hücrelerde ortak olarak var olduğunu düşündüğümüz mitokondri ile ilgileneceğiz.

Tüm hayvanlar, tüm bitkiler, mantarlar ve birçok mikroskobik canlı ökaryot hücrelerden oluşur. Ökaryot hücre tipi ise diğer bir hücre tipi olan prokaryot hücre tipinden, zarlı organeller bulundurabilmesi ve bulundurması bakımından ayrılmaktadır. Mitokondri, lizozom, hücre çekirdeği ve kloroplast bunlardan yalnızca birkaç tanesidir. Bitki, hayvan ve mantar hücreleri bahsi geçen tüm zarlı organelleri ortak olarak bulundurmazlar. Hayvan hücrelerinde örneğin; bitkilerde bulunan kloroplast organeli bulunmaz. Buna karşılık mitokondrinin tüm ökaryot hücrelerde ortak olarak bulunduğunu düşünürken, yeni bir araştırmada mitokondrisinden kurtulmuş ilk ökaryot canlı keşfedildi.

Mitokondri olmadan yaşamayacaklarını düşündüğümüz ökaryot hücreler ve ökaryot hücrelerden oluşan canlılar açısından bakıldığında keşfin önemi daha iyi anlaşılabilir. Hücrenin enerji santrali gibi çalışan mitokondri organelinin, erken evrimsel süreçte bazı hücre yapılarının içine girmiş bakterilerin kalıntıları olduğu çok geniş bir kitle tarafından öne sürülmektedir. Bu yönden ökaryot hücrelerin bir anlamda imzası olduğunu düşündüğümüz bu organelin, aslında sanıldığı kadar zorunlu olmayabileceği görülmüş oldu. Daha önceleri de araştırılan -mitokondrisiz ökaryot hücrelerin varlığı- konusu için bugüne kadar başarılı bir örnek bulunamamıştı.

Yapılan araştırmada, araştırmacılardan birine ait olan bir çinçillanın (amerika tavşanı) bağırsaklarından elde edilen Monocercomonoides cinsinden mikrobik bir canlı test edildi. Bütün genomu dizilenen canlının araştırılmasının sebebi ise, daha önceden de mitokondrilerinden kurtuldukları düşünülen cinse ait olmasıydı.

Genomu dizileyen ve inceleyen araştırma ekibi, mitokondrilerin kendine has olan DNA’lara sahip organeller olmalarına bakarak mitokondriyel genlerin varlığına dair izler aradı ve genomda buna dair bir ize rastlanmadı. Daha detaylı incelemeler, canlının genomunda mitokondrinin düzgün işlemesini sağlayacak kilit bir takım proteinlerin de eksik olduğu görüldü.

Monocercomonoides‘in, bizzat zarar vermediği bağırsakta yaşadığı için mitokondriye ihtiyaç duymuyor olabileceğini öne sürülüyor. Burada kendisi için de besin bol bulunmasına rağmen, mitokondrinin enerji üretiminde kullanacağı oksijen son derece az olabiliyor. Dolayısıyla Monocercomonoides, mitokondri yerine hücre içinde bulunan ve besinleri parçalayarak enerji üretmelerini sağlayan enzimler sayesinde yaşamını sağlıklı olarak sürdürebiliyor. Bununla birlikte, bu cins mitokondrinin diğer bir görevi olan proteinlerin sağlıklı enzimler olarak çalışmalarını sağlayacak olan yardımcıları (demir ve sülfür gibi) kümeler halinde sentezlemesinden de mahrum kalmış oluyor. Yapılan ileri incelemeler Monocercomonoides türünün, bu konuya aynı fonksiyonu gösteren bir takım bakteriyel genleri bünyesine katarak bir çözüm getirdiği görüldü.

Çığır açıcı nitelikteki bu araştırma Current Biology‘de tüm detayları ve sonuçları ile yayımlandı.


Kaynak :

  • Bilimfili,
  • Anna Karnkowska, Vojtěch Vacek, Zuzana Zubáčová, Sebastian C. Treitli, Romana Petrželková, Laura Eme, Lukáš Novák, Vojtěch Žárský, Lael D. Barlow, Emily K. Herman, Petr Soukal, Miluše Hroudová, Pavel Doležal, Courtney W. Stairs, Andrew J. Roger, Marek Eliáš, Joel B. Dacks, Čestmír Vlček, Vladimír Hampl A Eukaryote without a Mitochondrial Organelle Current Biology DOI: http://dx.doi.org/10.1016/j.cub.2016.03.053

Parkinson Hastalığı ve El Titremesi Geni Bulundu

Bilim insanları Parkinson hastalığı ve esansiyel tremor gelişiminden sorumlu geni buldular. Bu buluş ile insanlarda en sık gözüken iki farklı hareket bozukluğunun ortak sebebi ilk kez tanımlanıyor. Yeni tedavilerin önü açılabilir.

Özellikle bir iş yaparken ellerin titremesi (esansiyel tremor) insanlarda görülen en sık hareket bozukluğu. Ciddi bir maluliyet sebebi. Tüm dünyada yaklaşık yüzde 1, yaşlı gruplarda yüzde 4 gibi sık oranlarda olduğu biliniyor. Avrupa Birliği’nde yaklaşık 14 milyon, ABD’de 10 milyon esansiyel tremor hastası olduğu tahmin ediliyor. Ülkemizde ise bu sayının en az 1,5-2 milyon kişi düzeyinde olması bekleniyor.

Parkinson hastalığı ise hareket bozuklukları listesinde ikinci sırada bulunuyor. Gelişmiş ülkelerde binde 30, 60 yaş üzerinde yüzde 1 ve 80 yaş üzerinde yüzde 4 gibi oranlara ulaşabiliyor. Tüm dünyada yaklaşık 7 milyon Parkinson hastası olduğu hesaplanıyor.

Klinisyenler 1800’lerin sonlarından beri el titremesi olan insanların bir bölümünün daha sonra Parkinson hastalığına yakalandıklarını biliyorlardı. Ama bu ilişkinin temeli nörolojinin bilinmeyenleri arasında yerini koruyordu.

Bilkent Üniversitesi ve University of Washington araştırmacıları, Hacettepe ve Ankara Üniversitesi’nden klinisyenlerle yaptıkları ortak araştırma kapsamında yaklaşık 400 yıldır Orta Anadolu’da yaşadığı bilinen bir ailede bu sorunun yanıtını buldular.

Araştırma ekibi aralarında akrabalık bulunan, bunun yanında el titremesi ve Parkinson hastalığı görülen bu büyük ailenin altı nesline ulaşarak tüm genom dizilemesi yaptılar. Kapsamlı aile ağacı çizimleri ve nörolojik incelemeler yürüttüler. Yaklaşık 5 yıl süren, bu aile yanında 55 adet farklı büyük ailenin de karşılaştırmalı incelemesi sonucunda mitokondrilerde görev yapan bir serin proteaz olan HTRA2 geninin her iki hastalığın da ortak nedeni olduğunu gösterdiler.

HTRA2 geninde bulunan mutasyonun farelerde de Parkinson hastalığına benzer bulgulara neden olması güçlü ve bağımsız bir delil olarak dikkat çekti.

Hastalık geninin hem anne hem de babadan birlikte kalıtılması durumunda el titremeleri 10-20’li yaşlardabaşlayıp yaklaşık 30 yıl içinde Parkinson hastalığı ile sonuçlanıyor. Her iki hastalığın da beyin hücrelerinin ve özellikle dopamin üreten hücrelerin dejenerasyona uğramasından kaynaklandığı, dopamin maddesinin insanların hareket kabiliyetleri ve bunun yanında ruh halleri ile ilgili oldukları daha önce yapılan araştırmalarda ortaya konmuştu.

Araştırmanın sorumlu yazarlarından Bilkent Üniversitesi, UNAM Ulusal Nanoteknoloji Araştırma Merkezi öğretim üyesi Dr. Ayşe Begüm Tekinay “Şimdi yaklaşık 100 ailede yeni genleri araştırıyoruz. Bunun için TÜBİTAK tarafından desteklenen bir projemiz bulunuyor” dedi.

genotype-bilimfilicom

‘Araştırmaların açtığı yol’

Akraba evliliklerinin nadir genetik hastalıkların genlerinin bulunmasına katkıda bulunduğu biliniyordu. Ama toplumda sık gözüken nörodejenerasyon, obezite, diyabet gibi kompleks hastalıkların genlerinin bulunmasına da akraba evliliklerinin bu derece güçlü bir katkıda bulunması beklenmiyordu.

Araştırmanın yöneticilerinden olan, Türkiye Bilimler Akademisi üyesi ve Bilkent Üniversitesi Fen Fakültesi DekanıProfesör Tayfun Özçelik “Kuvvetle inanıyorum ki kompleks hastalıklarla ilgili yeni hastalık genlerini önümüzdeki dönemde aydınlatmaya devam edeceğiz” dedi. Halen Parkinson hastalığı veya el titremesi için kesin bir tedavi metodu bilinmemekte. Bazı ilaçların ve derin beyin uyarısının bazı semptomları azalttığı ise hastalıklardan etkilenen kişiler için yegane ümit kaynağı.

Amerikan Bilimler Akademisi üyesi, University of Washington öğretim üyelerinden ve Lasker ödülü sahibi ünlü genetikçi Professor Mary-Claire King ise “Dr. Tekinay’ın araştırmaları bilim dünyası için yeni bir umut oldu, Bilkent, Hacettepe ve Ankara Üniversitesi ekiplerinin Parkinson hastalığı ve el titremesi alanlarına çok değerli katkıları olmakta, bunun gelecekte artarak devam edeceğine, tedavinin önünü açacağına inanıyorum” dedi.

Araştırma, Proceedings of the National Academy of Sciences ‘da yayınlandı.


Kaynak:

  1. Bilimfili,
  2. Bilkent Üniversitesi, http://www.bilkent.edu.tr/bilkent-tr/information/mbg_genbulusu.html
  3. Hilal Unal Gulsuner, Suleyman Gulsuner, Fatma Nazli Mercan, Onur Emre Onat, Tom Walshb, Hashem Shahine, Ming K. Leeb, Okan Doguf, Tulay Kansug, Haluk Topalogluh, Bulent Elibol, Cenk Akbostancic, Mary-Claire King, Tayfun Ozcelika, and Ayse B. Tekinay Mitochondrial serine protease HTRA2 p.G399S in a kindred with essential tremor and Parkinson disease Proceedings of the National Academy of Sciences vol. 111 no. 51 > Hilal Unal Gulsuner, 18285–18290, doi: 10.1073/pnas.1419581111

AOX adlı bir enzimin mitokondri hastalıklarında kullanımı ihtimali araştırılıyor

AOX, insanda olsa ne olur?’ sorusunun cevabına adım adım yaklaşılıyor

Finlandiya’nın Tampere ve Helsinki Üniversiteleri’nde, Prof. Dr. Howy Jacobs önderliğinde alternatif oksidaz (AOX) adlı bir enzimin mitokondri hastalıklarında kullanımı ihtimali araştırılıyor.

Bu araştırmalar henüz erken safhada olduğundan bunu bir tedavi yöntemi olarak önermeseler de, günümüzün gen aktarım teknikleri sayesinde ‘AOX, insanda olsa ne olur?’ sorusunun cevabına adım adım yaklaşılıyor.

Araştırma ekibinin içinde Finlandiya’nın Tampere Üniversitesi’nden Dr. Çağrı Yalgın da var. Başta bu araştırma, mitokondri hastalıkları ve yaygınlığı üzerine  Dr. Yalgın’a  sorduğumuz  sorular ve T24 için aldığımız yanıtlar şöyle:

– Mitokondri nedir?

 

Mitokondri, her hücremizde yüzlercesi, hatta binlercesi bulunan bir ‘organcık’. Örneğin Şekil 1’deki elektron mikroskop görüntülerinde solda bir hücredeki bütün mitokondriler, ortada yakından tekil mitokondriler, sağda ise çok yakından tek bir mitokondrinin içi görülüyor.

Hücrenin enerji ihtiyacını bu organcıklar karşılıyor. Yediğimiz gıdalar önce sindirim sistemimizce küçük parçalarına ayrılıyor, hücre içine girdikten sonra ise mitokondriler tarafından yakılıyor ve çıkan enerji kimyasal olarak depolanıyor.

 

– Mitokondrilerdeki arızalar bu süreçleri nasıl etkiliyor?

 

Kimi zaman enerji yetersizliğine, kimi zaman da açığa çıkan enerjinin kontrolden çıkmasına ve hücreye zarar vermesine sebep oluyor. (Kontrolden çıkmış bir nükleer santral gibi düşünün.) Bu olumsuz süreçler özellikle beyinimizin de dahil olduğu sinir sistemini etkiliyor. Beynimiz vücudumuzun ağırlıkça yüzde 2’sini oluşturur, ama kullandığımız enerjinin yüzde 20’sini tüketir. Bu yüzden, mitokondri arızalarının sebep olduğu enerji eksikliği öncelikle beyni etkiliyor olmalı diye düşünüyoruz.

 

– AOX?

 

Bu enzim kontrolden çıkan yüksek enerjili elektronları kontrol altına alabilecek özellikte. Ne var ki AOX insanlarda, hatta çoğu hayvanda yok. Bitkilerde ve basit hayvanlarda var, ama omurgalı hayvanların evriminden önce kaybolmuş. Neden kaybolduğunu bilmiyoruz. Ama en azından günümüzün gen aktarım teknikleri sayesinde bu enzim insanda olsa ne olur sorusunun cevabına adım adım yaklaşıyoruz.

 

Bunu sirke sineklerinde (Drosophila melanogaster) sınadık. Normalde sinekler kullandığımız tüplerde yukarı tırmanmak ister, biz de bunu sineğin hareket becerisini ölçmek için kullanıyoruz. Yalnızca sinir hücrelerinde mitokondri arızası taşıyan sinekler tırmanma becerilerini tamamen kaybettiler, tüpün zemininde halsiz bir şekilde yatıyorlardı. Bu arızaya ek olarak AOX taşıyan sinekler ise hareket becerilerini büyük oranda geri kazanmışlardı. Bunu sayılara dökünce yüksek dozda AOX’un daha çok, düşük dozda AOX’un ise daha az düzelme sağladığını gördük. Genetik olarak etkisizleştirilmiş AOX ise hiç düzelme sağlamadı. Ayrıntılar açık erişimli Scientific Reports dergisindeki makalemizde bulunabilir. Bu sonuçlar ümit vaat etse de tedavi olarak kullanılmaya başlaması için fareler gibi insana yakın hayvanlarda da yinelenmesi, klinik deneylerinin yapılması gibi süreçlerin tamamlanması gerekli.

 

– Mitokondri hastalıklarını araştırma çerçevesinde son yıllardaki teknoloji ve analiz tekniklerinde yaşanan atılımlar neler?

 

Dr Çağrı YalgınBu konudaki en önemli, ancak tartışmalı gelişme kuşkusuz mitokondri nakli. Mitokondrinin bir özelliği, hücre çekirdeğindekine ek olarak bir miktar DNA taşıması. Kendi proteinlerinin bir kısmını bu DNA’daki kodu okuyarak üretiyor. Ancak bu koddaki bazı değişiklikler bu proteinlerin üretimini, dolayısıyla mitokondrinin enerji üretimini ve dolayısıyla hücrenin sağlığını olumsuz etkiliyor. İşte mitokondri nakli, buna önerilen çözümlerden biri. Bu nakil için mitokondrileri sağlıklı bir bağışçı kadın gerekiyor. Bu kadından alınan bir yumurtanın çekirdeği çıkarılacak. Mitokondrileri arızalı annenin yumurtasından alınacak hücre çekirdeği (yani annenin DNA’sının neredeyse tamamı), bağışçının çekirdeksiz yumurtasına nakledilecek. Teknik olarak kolay değil, ancak hayvan yumurtaları üzerindeki deneylerde ortaya çıkan birçok sorunu çözerek sağlıklı hayvanlar meydana getirmeyi başaran bilim insanları şimdi bunu insanlarda denemek istiyor.

Ancak bu deneylere yönelik etik itirazlar var. Mitokondri kendi DNA’sını taşıdığı için mitokondri naklinin sonucu olarak çocuk anne ve babasınınkine ek olarak mitokondri bağışlayan bireyden genetik materyal taşıyor. Gerçi bu katkı çok ama çok küçük, ama toplumda tartışma oluşturmaya yetti.

 

– Ne gibi tartışmalar?

 

Doğacak çocuğun, anne-babasının ve bağışçının birbiriyle bağı üzerine tartışmalar. Çocuğun iki annesi mi olacak? Bağışçının çocukla bağı ne olacak? Maalesef basın bu sorulara, tedavinin tıbbi yararlarından ve risklerinden daha çok odaklandı. Konuyla ilgili birçok haber “üç ana-babalı bebekler geliyor” başlığıyla verildi ki maalesef bunu hâlâ görebiliyoruz.

 

– Konu üzerine sizin fikriniz ne?

 

İnsan mitokondrisi toplam 37 gen taşıyor. Üstelik bunlar bireyin kişiliğiyle değil, mitokondrinin kendi genetik işlemleriyle ve hücrenin enerji metabolizmasıyla ilgili genler. Kanımca bu kadar küçük genetik katkının tartışması, çocuğa sağlanabilecek büyük sağlık yararlarının önüne geçmemeli. Bireyin ağrısız, bağımsız ve sağlıklı bir hayat sürmesi mi önemli, yoksa genetik bilgisine yüzde 1’den az katkı yapmış üçüncü bir bireyin mahiyeti mi? Neyse ki Birleşik Krallık’ta Avam Kamarası bilim insanlarına ve etik uzmanlarına da danışarak geçen yıl insanlarda mitokondri nakli denemelerinin önünü açtı. Bunun diğerlerine emsal olmasını umuyorum.

Ancak mitokondri nakli her mitokondri hastalığına çare değil. Mitokondrinin kendi DNA’sında değil de içinde bulunduğu hücrenin DNA’sında meydana gelmiş mutasyonların da mitokondriyi etkilemesi mümkün. Bu hallerde mitokondri nakli yararsız olacağından elimizdeki AOX gibi yöntemlerin de geliştirilmesinde yarar var.

Bunun yanı sıra CRISPR ve TALEN gibi yeni genom düzeltme teknikleri de bu konuda gelişme sağlayabilir. Örneğin geçen yıl Salk Enstitüsü’nden Izpisua Belmonte’nin ekibi fareler üzerinde kullandıkları böyle bir yöntemin kısmi başarısını bildirdi. Bununla bireyin hayat kalitesinin kısmen dahi olsa iyileştirilmesi, son derece olumlu bir adım olacak.

 

– Bu hastalıklar ne kadar yaygın?

 

Toplamda her 5000 kişiden birinin bir mitokondri bozukluğundan etkilendiği hesaplanıyor. Bu etkiler birçok zaman sinir sistemi üzerinde olsa da aslında her organı etkileyebiliyor.

Mitokondriler babadan değil, yalnızca anneden çocuğa geçtiğinden bu hastalıklar da anneden çocuğa geçiyor.

Her birey farklı oranda etkilenebiliyor. Bahsettiğim gibi bir hücrede yüzlerce mitokondri var, ve bunların ne kadarının arızalı, ne kadarının sağlıklı olduğu hastalığın şiddetini belirliyor.

 

– Üzerinde çalıştığınız başka problemler neler?

 

Laboratuvarımızdaki araştırmacılar büyük oranda bu projeye odaklanmış durumda. AOX’un mitokondri ve enerji metabolizmasına yönelik diğer bozukluklarda kullanımını araştırıyorlar.

Bunun yanı sıra bahsettiğim araştırmaların daha ayrıntılılarını yapıyoruz. Mesela, tam olarak hangi sinir hücrelerindeki mitokondri arızası nedeniyle yukarıda bahsettiğim sinekler hareket güçlüğü çekiyor? AOX nasıl fayda ediyor da bu sinekler yeniden hareket edebilmeye başlıyor? Bu soruların cevaplarını araştırmak için sirke sinekleri iyi bir model. Çünkü birçok deney bu hayvanlarla daha çabuk ve daha ucuza yapılabiliyor. Buradan aldığımız olumlu sonuçları, fare gibi memeli hayvanlarda tekrarlamayı umuyoruz.

 

Dr. Çağrı Yalgın kimdir?

 

Bornova Anadolu Lisesi’nden ve Marmara Üniversitesi Tıp Fakültesi’nden mezun oldu. Sinir gelişimi alanındaki doktora çalışmalarını Tokyo yakınlarındaki RIKEN Beyin Bilimleri Enstitüsü’nde yaptı. Şu anda Finlandiya’nın Tampere Üniversitesi’nde mitokondri hastalıklarının sinirsel etkilerini genetik yöntemler ile araştırıyor.

Kaynak:

  1. T24
  2. Ana Andjelković, Marcos T. Oliveira, Giuseppe Cannino, Cagri Yalgin, Praveen K. Dhandapani, Eric Dufour, Pierre Rustin, Marten Szibor, and Howard T. Jacobsa, Diiron centre mutations in Ciona intestinalis alternative oxidase abolish enzymatic activity and prevent rescue of cytochrome oxidase deficiency in flies Sci Rep. 2015; 5: 18295. Published online 2015 Dec 17. doi: 10.1038/srep18295

Hücrelerin Enerji Kaynakları, Bir Zamanlar Enerji Parazitiydi!

Virjinya Üniversitesi’nin yeni çalışmasına göre hayvan ve bitki hücrelerindeki mitokondriler parazit bakterilerin birinci dereceden kuzenleridir ve bu enerji parazitleri yararlı hale gelmeden önce hücrede parazit yapıda çalışıyorlardı. Çalışmada yeni nesil DNA dizileme teknolojileri kullanılarak mitokondrinin yakın akrabası olan 18 bakterinin genomlarının şifreleri çözüldü. Çalışma; mitokondrinin endosimbiyozu (Konak hücrenin mitokondri hücresini içine alması durumu) ile ilgili güncel olan iki teoriye karşı yeni bir alternatif sağladı.
Mitokondri tüm ökaryot hücrelerde, hücrelere adenozin trifosfat(ATP) yani enerji sağlayarak hücrenin enerji kaynağı olarak görev alır. Biyologlar ATP’nin yaşamın enerji kaynağı olabileceğini düşünüyorlar. Mitokondri yaklaşık 2 milyar yıl önce ortaya çıktı ve bu olay yaşamın evrimsel tarihine yön veren olaylardan biri olarak görülüyor. Ancak bu süreçteki çevre şartlarıyla ilgili çok az şey biliniyor ve bu olay modern bilyolojide gizemini koruyor. Virjinya Üniversitesi’nden çalışmanın lider yazarı olan Biyolog Martin Wu şöyle söylüyor:
“Biz inanıyoruz ki bu çalışma bizim mitokondriye karşı bakış açımızı değiştirme potansiyeline sahip. Bizim araştırmalarımıza göre güncel teorinin bakteri ve konak hücrenin arasındaki ilk mutualist (karşılıklı olarak faydalı) ilişki tanımı muhtemelen yanlış. Aksine, aralarındaki ilişki parazitik ilişkiye benzer. Ancak daha sonradan ATP’nin taşıma yönünün değişmesi ile bakteri konak hücre için yararlı hale gelmiştir.”
Wu’nun söylediklerine göre çalışma bugün bizim gördüğümüz ökaryotik hayattaki çeşitliliğe neden olan yaşamın erken tarihindeki bir olaya ışık tutan yeni bir bakış. Wu şöyle söylüyor:
“Biz mitokondriyal atalarımızın gen içeriğini, yakın akrabalarının genomlarını DNA sıralama yöntemi ile yeniden inşa ettik ve bizim tahminlerimize göre ilk hücre konak hücreden enerji çalan bir parazitti ve bu da mitokondrinin şu anki hücredeki rolünün tamamen zıttı.”
Wu çalışmasında ayrıca mitokondri geninden türetilen birçok insan geni tanımladı. Tanımlama insanın mitokondriyal fonksiyon bozukluğunun genetik temellerini anlamımıza da yardım edebilir ve bu da Alzheimer, Parkinson, diyabet ve yaşlanma ile ilgili birçok hastalığının çözümüne katkı sağlayabilir.
Mitokondrinin hücre içindeki rolüne ek olarak mitokondrinin DNA’sı adli tıpçılar, soybilimciler ve insanın evrimsel tarihini konu alan bilim insanları tarafından sıkça kullanılmaktadır.
 
Kaynak:
  1. ScienceDaily
  2. Zhang Wang, Martin Wu. Phylogenomic Reconstruction Indicates Mitochondrial Ancestor Was an Energy Parasite. PLOS ONE, 2014 DOI: 10.1371/journal.pone.0110685

Kas Hareketleri: Kaslarınız Nasıl Çalışıyor?

Masanın üzerinde duran bir bardağa, içerisindeki suyu içmek amacıyla uzandığınızı düşünün. Bunu kolayca yapabileceksinizdir, değil mi? Üzerinde çok kafa yormanıza gerek bile yok! Ancak bir düşünün: Kolunuzu olduğu yerden kaldırıp, bardağı tam olarak ağırlık merkezi etrafından kavrayabilecek şekilde yerleştirip, parmaklarınızı sizi yormayacak ama bardağın da kaymasına engel olacak kadar sıkmanızı sağlayabilen ve yumuşak, sürekli bir hareketle bardağı ağzınıza götürme sürecini gerçekleştiren bir kahraman var: kaslarınız! Onların ne kadar isabetli olduğu üzerine birazcık kafa yoracak olursanız, nasıl çalıştıklarını merak etmemeniz imkansız olacaktır.

Biyoloji derslerinin olmazsa olmazı “kas hareketleri”ni, biraz daha görsel bir şekilde anlatabiliriz diye umduk ve bu hareketli görseli Türkçeye kazandırmak istedik. Görselin her bir kısmında, kas hareketleri ve bunların nasıl gerçekleştiğiyle ilgili bilgiler bulacaksınız. Umuyoruz ki vücudunuzun ve doğanın nasıl çalıştığını anlamanıza katkı sağlayacaktır.

Hazırlayan: ÇMB (Evrim Ağacı)
 
Görsel Düzenleme: Ali Kılıç (Evrim Ağacı)
 
Çeviren: Şule Ölez (Evrim Ağacı)