Hücre İçi Mikrotübül Rayların Kurulması ile İlgili Yeni Keşif

Warwick Üniversitesi araştırmacıları, insan vücudu içerisinde hücrelerin kendi ulaşım ağlarını nasıl yarattıklarını keşfettiler. Bu keşfin bağırsak kanseri gibi hastalıkların işleyişi ve ortaya çıkışı ile ilgili bilinmeyenleri çözümlemeye yardımcı olacağı düşünülüyor. Çalışmanın detayları ve sonuçları Nature Scientific Reports’da yayımlandı.

Warwick Tıp Fakültesi’nden Profesör Rob Cross araştırma ile ilgili şu açıklamada bulundu : ” Vücudumuzdaki her hücre, mikrotübül adı verilen miinik raylardan oluşan ve hücre içindeki önemli duraklar arasında taşınması gereken kargoların iletimini sağlayan bir trenyolu ağı’nı barındırır. Bu hücre içi rayların boyutları ise – 25 nanometre (milimetrenin milyonda biri) ene sahip oldukları biliniyor- hayal etmesi zor derecede küçüktür. İç ray sisteminin varlığı da, hücrenin normal ve sağlıklı biçimde fonksiyonlarını yerine getirmesi, işlevini koruması ve işlemesi için çok büyük bir öneme sahiptir.”

Bu mikrotübül yollar. hücre bölünmesi gibi fonksiyonlar için olduğu gibi, bir takım önemli kanser ilaçlarının ana hedefi olarak da ciddi önem arz etmektedir. Prof. Cross’un laboratuvarı ise mikrotübül yolların nasıl kuruluyor olduğu üzerine çalışıyor.

Profesör Cross ; bir protein grubu olan TOG’ların, büyümekte veya başka bir deyişle uzamakta olan mikrotübüllerin uçlarında bulunduğunun ve küçük birer demiryolu işçisi gibi çalıştıklarının bir süredir bilindiğini belirtiyor. Ancak bu protein takımının tam olarak nasıl organize olduğu ve gerçekte nasıl efektif biçimde çalıştığı konusu gizemini korumaktaydı.

Cross ve araştırma ekibi yeni çalışmalarında, TOG’ların mikrotübüllerin uçlarındaki yerlere TACC denen başka bir protein grubunun yardımı ile tutunuyor olduğunu ve de TOG-TACC sisteminin mikrotübül büyümesini koruduğunu ve de yeni mikrotübül raylarının uzamasını hızlandırdığını gösterdi.

Bu anlamda TOG-TACC makine sisteminin mikrotübül uzamasını katalize ettiği ve sonuçlara bakılırsa da TOG-TACC’ın çok alışılmadık bir katalist olduğunu söylemek mümkün.

Mikrotübül büyümesinin nasıl katalize edildiğinin anlaşılması ile, araştırma ekibi bulgularının; içinde bağırsak kanseri gibi TOG-TACC sistemindeki fonksiyon anormallikleri ile ilişkilendirilen birçok insan hastalığına dair çözüm arayışlarına yeni kapılar açacağını umuyor.


Kaynak :

  1. Bilimfili,
  2. Frauke Hussmann, Douglas R. Drummond, Daniel R. Peet, Douglas S. Martin, Robert A. Cross. Alp7/TACC-Alp14/TOG generates long-lived, fast-growing MTs by an unconventional mechanism. Scientific Reports, 2016; 6: 20653 DOI: 10.1038/srep20653

İnsan embriyosunu koruyan virüs DNA’da gizleniyor

Hayatta kalmamız ve karmaşık vücut yapımız tamamen ilk insan embriyolarında bulunmuş olan kaçak yolcuların “virüs”lerin eseri olabilir. Virüs hem insan embriyosunu diğer virüslerden korumuş hem de insan genlerineembriyodan yeni insanı oluştururken altyapıda yardımcı olmuş gibi görünüyor.

University of California’da yürütülen araştırma ile uzun zamandır terkedilmiş gibi görünen ‘milyonlarca yıldır DNA’mızın içinde bulunan virüs genlerinin sessizce evrimimizi ve varlığımızı kontrol ettiği’ fikri yeniden gündeme geldi.

Retrovirüsler konuk oldukları hücrelerin içine genetik materyallerini enjekte eder ya da bırakırlar. İlk zamanlar bu materyaller hastalığa ve ölüme sebep olurken zamanla konuk eden hücre virüse karşı bir direnç evrimleştirir ve sperm veya yumurtalarının içine giren DNA parçacıkları gelecek nesillere aktarılmaya başlar. Araştırmada bahsedilen virüs endojen (içte olan – içe yayılmış) retrovirüs ya da ERV olarak bilinen hücre genomunda kalıcı olan bir virüs.

Sessiz koruyucu

Genomumuzun yüzde 9’unun virüsler aracılığıyla geldiği düşünülüyor. Viral kalıntılar, binlerce yıl önce etkilerini  kaybetmiş “atık-çöp” DNA bölümleri olarak varsayılıyordu. Ancak HERVK’nin (yaklaşık 200.000 yıl önce – ki en son girenlerden biridir- DNA’mızın içine girmeyi başarmış viral genom) keşfi bu nosyonu tartışmaya açtı.

3 günlük insan embriyolarında gen ekspresyonu (genlerin protein sentezlemesi süreci) üzerine çalışırken bu beklenmedik keşfi yapan Stanford Üniversitesi bilimcileri, toplam 8 hücreden oluşan embriyolarda anne ve babadan gelen DNA’lar dışında HERVK genetik materyallerini de tespit etti. Bu hücrelerin viral protein ürünleri ile dolu olduğu hatta bazılarının virüs benzeri şekillere sahip olduğu kaydedildi.

Devam eden deneyler ile virüsün , diğer virüslerin hücreye girmesini engelleyen bir protein de ürettiği ortaya çıktı. Böylelikle grip gibi embriyo için tehlikeli olan virüslerden korunmuş oluyoruz. Hücresel olarak gerekli olan diğer doğal protein sentezlerinde de yol gösterici olan viral genler tam manasıyla bizim sessiz kahramanlarımızdır.

Biyolojik Kara Delik

Bu kaçak yolcuların bizi diğer primat ve şempanzelerden ayırıyor olma ihtimali üzerinde de duruluyor. Bazı araştırmacılar endojenik retrovirüslerin türleşme veya türlerin birbirinden ayrılma süreçlerinde hatta bireylerin tür içinde birbirlerinden farklı olmaları üzerinde nasıl etkili bir rol oynamış olabileceğini düşünüyor.

Görece son dönemlerde DNA’mıza girmiş retrovirüs kalıntılarının protein ürünleri bir çok gelişimsel programı yönlendirdiği mevcut araştırma ile gösterildi. Enfeksiyonları engelleyen ERV ürünleri de gözlemlendi ki bu aslında virüslerin konuk olacakları hücre için yarıştıklarını (uzun süredir bilinen bir fenomen) doğruluyor.

Genelgeçer gibi görünmesine rağmen biyolojideki kara delik olarak adlandırılan tüm bu süreçler çoğu zaman gözden kaçıyor. Bunu DNA’yı bir orman, virüsleri de içinde yaşayan adapte olmuş hayvanlar veya küçük hayvanlar olarak düşünerek hayal edebiliriz. En etkili virüsler – HERVK gibi – kalıcı olarak DNA’mızın içine girerek kendilerini gelecek nesillere aktarılmak üzere yerleşebiliyorlar.

Konuk oldukları hücrenin genetik malzemesini yeniden (modaya uygun şekilde) düzenleme işlevi gören virüsler, aktif genleri etkiliyor veya etkileşime girdiklerini aktive edebiliyor. Bu da aslında fiziki özelliklerimizi yeniden şekillendirebileceklerini gösterirken, klonlama , gen klonlama uygulamaları için çok dinamik bir alan da yaratıyor.

 


Referans :

  1. Bilimfili,
  2. newscientist.com, Virus hiding in our genome protects early human embryos ,
  3. Edward J. Grow, Ryan A. Flynn, Shawn L. Chavez, Nicholas L. Bayless, Mark Wossidlo, Daniel J. Wesche, Lance Martin, Carol B. Ware, Catherine A. Blish, Howard Y. Chang, Renee A. Reijo Pera & Joanna Wysocka Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells Nature, 522,221–225doi:10.1038/nature14308

İlk Kez ‘Tek Bir Protein Molekülü’nün Fotoğrafları Çekildi

Flaşın patladığı anda derimizi yakacak kadar parlak ve güçlü olacağını bilsek, selfie çekmeyi aklımızdan bile geçirmezdik. Biyologlar şu an mikroskop altında proteinleri çalışırken buna benzer bir problemle yüzleşiyorlar çünkü günümüz görüntüleme teknikleri protein moleküllerine zarar veriyor. Buna karşın bir kurtarıcı mevcut; ‘grafen’ (karbonun ultra ince zar yapısındaki formu) ve hatta tek bir proteinin ilk görüntüleri başarı ile alındı bile.

Proteinler hakkında çok fazla bilgisi olmayanlar için şunu söylemekte yarar var; proteinlerin fotoğraflarını çekebilmek veya herhangi bir yöntemle görüntüleyebilmek yapısal formlarını, parçalarını, bileşenleri ve bunlara bağlı olarak da fonksiyonlarını anlayabilmemiz için büyük bir önem taşıyor. Hatta proteinlerdeki hatalar hastalıkların da temel sebeplerinden biri olduğu için birçok hastalığın tedavisi için de protein yapısındaki bozuklukları anlayabilmek aynı şekilde hayati bir öneme sahip. Ne var ki; X-ray kristalografi veya kriyo-elektron mikroskobisi (bir elektron mikroskobu tekniği çeşidi, bu teknikte incelenecek olan örnekler çok düşük sıcaklıklarda gözlemleniyor) gibi yöntemler milyonlarca molekülün ortalamasını alarak varsayıma dayalı ve kapalı bir görüntü elde etmemize sebep oluyor.

Bir varsayımsal ortalama almak ise bu anlamda gerekli sayılır, çünkü X-ışını veya yüksek enerjili elektronlarla bir molekülü aydınlatarak görüntülemek o proteine zarar verebiliyor yani sonuçta tek ve düzgün bir şeklin görüntüsünü almak mümkün olmuyor. Bunun yanı sıra bir molekülü de bir noktada görüntüsünü alana kadarki sürede sabit tutmak da son derece zorlu bir işlem. Şimdi ise Zürih Üniversitesi’nden Jean-Nicolas Longchamp ve araştırmacı arkadaşları tam da bu sorunları aşarak bekleneni gerçekleştiren bir yöntemle ortaya çıktılar.

İlk olarak bir protein çözeltisini, haliyle ince olan grafen düzlemin üzerine spreyle yayarak molekülleri burada sabitliyorlar. Daha sonra da holografik elektron  mikroskobun (elektron dalgalarını kullanarak holografik görüntü elde etmeye yarayan teknik) altında görüntüyü alabiliyorlar.

Bu enstrüman düşük enerjili elektronlardan yararlandığı için proteinlerin yapısına zarar vermiyor. Dezavantaj gibi görünen tek kısım ise bu şekilde oluşan görüntünün mikroskobun detektöründen geçememesi ki tam da burada grafen devreye giriyor. Bildiğimiz üzere optik mikroskoplarda kullandığımız lam ve lameller vardır. Buradaki elektron mikroskobu için de araştırmacılar düşük enerjili elektronların geçebileceği kadar ince bir şeye ihtiyaç duyuyorlardı ve bu işi grafenle halletmeyi başardılar.

Araştırma ekibi bu tekniği tamamı birkaç nanometre boyutlarındaki bir dizi protein (hemoglobin bunlardan birisi) üzerinde denediler. Bugüne kadar yazılımsal olarak veya diğer görüntüleme teknikleri ile elde edilen modellerle gayet iyi bir biçimde uyuşan sonuçlar elde edildi. Aşağıdaki görselde hemoglobin, sitokrom c domainleri ve BSA proteinleri için bu sonuçlar gösterilmiş. (a) dizisi yeni teknikle elde edilen fotoğrafları, (b) dizisi de daha önceki verilere dayalı olarak oluşturulmuş olan modelleri gösteriyor.

ilk-goruntulenen-protein-bilimfiliocm
Görsel Telif : Jean-Nicolas Longchamp of the University of Zurich, Switzerland

Araştırmacılar şimdi de mevcut tekniklerle görüntülenemeyen molekülleri bu yeni teknik ile fotoğraflamayı planlıyorlar. Bunun sonucunda da yeni medikal araştırmaların ve tedavi biçimlerin geliştirilebileceğini öngörmek mümkün.

 


Kaynak : Bilimfili, Longchamp, Jean-Nicholas, et. al. ; How to image a single protein, 30 Dec 2015 arxiv.org/abs/1512.08958

Proteinlerin; DNA veya RNA’ya İhtiyaç Olmaksızın, Diğer Proteinlerin Üretimini Yönetebileceği Gösterildi!

Herhangi bir biyoloji ders kitabını açın ve öğreneceğiniz ilk şey DNA’nın proteinleri oluşturacak bilgileri barındırdığıdır. Proteinler, vücudumuzdaki işlerin büyük bir kısmını yapan ufak kimyasallardır. 2 Ocak 2015’te Science dergisinde yayımlanan bir makale, ders kitaplarımızdaki bilimi sarsacak bir keşfe imza atıyor: proteinlerin yapıtaşları olan aminoasitlerin hem DNA’ya, hem de protein üretiminde kilit rolü olduğu düşünülen mesajcı RNA’ya (mRNA) ihtiyaç duymaksızın bir araya gelerek proteinleri oluşturabiliyorlar. Araştırmacılar, bir proteinin bir diğer proteinin nasıl oluşacağını gösteren bir örneği gözlemeyi başardılar. Utah Üniversitesi Biyokimya Bölümü doktora sonrası araştırmacısı Peter Shen şöyle söylüyor:

“Bu şaşırtıcı keşif, biyoloji hakkındaki bilgilerimizin ne kadar eksik olduğunu gösteriyor. Doğa, bizim fark ettiğimizden çok daha fazlasını yapabilecek kapasiteye sahip.”
 
Bu keşfin ne anlama geldiğini algılayabilmek için, hücreyi iyi çalışan bir fabrikaya benzetebiliriz. Ribozomlar proteinleri üreten üretim hatlarında çalışan makinalardır. Bunlar, genetik koddaki bilgiler çerçevesinde aminoasitleri birbirlerine bağlayarak proteinleri üretirler. Bir şey ters giderse, ribozomun çalışması aksayabilir ve bu noktaya “kalite kontrol ekibi” gelir. Bu karışıklığı düzeltmek için, ribozom parçalarına ayrılır, içeriği parçalanarak atılır ve kısmen üretilmiş, sorunlu protein geri dönüştürülür.
Fakat bu yeni araştırma, bu kalite kontrol ekibinde bulunan ve maya mantarından insana kadar sayısız türde korunmuş halde bulunan Rqc2 isimli bir proteinin şaşırtıcı bir görevini gösterdi. Tamamlanmamış (sorunlu) protein geri dönüştürülmeden önce Rqc2 ribozomların proteine toplamda 20 adet bulunan aminoasitlerden 2 tanesini eklemesini sağlıyor: alanin ve threonin. Üstelik bunu tekrar tekrar ve rastgele bir sırada yapıyor. Bunu, otomatik bir üretim hattının, komutlarını yitirmesine rağmen üretime devam etmesi gibi düşünebilirsiniz. Alabildiği ne varsa alıyor ve ürünün üzerine takıştırıveriyor. Bir araba üretim hattı gibi düşünecek olursanız, arabaya rastgele korna, tekerlek, tekerlek, korna, korna, korna, tekerlek, korna, tekerlek eklemek gibi… San Francisco Kaliforniya Üniversitesi’nden Doç. Dr. Adam Frost şöyle söylüyor:
“Bu durumda, normalde mRNA’nın yapması gereken görevi yapan bir protein görüyoruz. Bu keşfe bayıldım, çünkü proteinlerin yapabileceklerini düşündüğümüz şeylerin sınırını bulanıklaştırıyor.”
 
Tıpkı ekstra kornalar ve tekerleklerden oluşan yarım yamalak tamamlanmış bir arabanın görüneceği gibi, rastgele gibi gözüken bir sırada alanin ve threonin eklenmiş bir protein de tuhaf gözüküyor. Ve normalde, düzgün çalışmaması gerekir. Ancak tamamen anlamsız gözüken dizilim, belli başlı işleri yerine getiriyor. Bu kod, yarı-tamamlanmış proteinin yok edilmesi gerektiğini veya ribozomun düzgün çalışıp çalışmadığını anlamaya yarayan bir deneme üretiminin parçası olacağını belirlemeye yarıyor. Eldeki kanıtlar, Alzheimer, ALS ve Huntington gibi nörodejeneratif hastalıklarda bu sürecin sorunlu işlediğini gösteriyor. Stanford Üniversitesi’nden Dr. Onn Brandman şöyle söylüyor:
“Bu çalışmanın çok sayıda ilginç uygulama alanı bulunuyor ve eğer ki merakımızı takip etmeseydik, bunların hiçbirini bilmiyor olacaktık. Keşfi mümkün kılan asıl itici güç, gördüğünüz bir şeyi incelemektir ve biz de bunu yaptık. Bunun yerini alabilecek hiçbir şey yoktur ve var olmayacak.”
 
Araştırmacılar öncelikle kendi gözleriyle gördüklerini sıradışı bir olgu olarak nitelediler. Cryo-elektron mikroskopisi adı verilen bir yöntemi hassasça ayarlayarak anlık dondurmayı mümkün kıldılar ve sonrasında kontrol düzeneğini iş başında gözlemeyi başardılar. Frost şöyle söylüyor:
“Rqc2’yi iş başında gözlemeyi başardık. Ancak fikir öylesine uç bir fikirdi ki… Bunu ispatlama yükümlülüğü bizim omuzlarımızdaydı.”
 
Hipotezlerini doğrulamak için çok kapsamlı biyokimyasal analizler yaptılar. Yeni RNA dizileme teknikleri, Rqc2/ribozom kompleksinin durmuş protein üretimlerine aminoasit ekleme potansiyeli olduğunu gösterdi. Çünkü bunlar, aynı zamanda ribozomlara aminoasitleri taşıyan tRNA’lara da bağlanabiliyorlar. Gördükleri belirli tRNA’lar sadece alanin ve threonin aminoasitlerini taşıyorlardı. Bu sorunlu oldukları için üretimi durmuş proteinlerin uzun alanin ve threonin zincirleri olduğunu göstermeleri ise, bulgularını tartışmasız gerçek kıldı. Frost şöyle söylüyor:
“Şimdiki işimiz bu sürecin nerede ve ne zaman gerçekleştiğini bulmak… Ve düzgün çalışmadığında neler olduğunu…”
 
 
Görsel: Sarı renkli Rgc2 proteini, koyu mavi ve turkuaz renkli tRNA molekülüne bağlanmış. Ortadaki parlak nokta, eklenen aminoasidi gösteriyor. Yeşil renkli bölge, yarı-üretilmiş protein. Beyaz kısımlarsa ribozom.
 
Kaynak:
  1. Phys.org
  2. Rqc2p and 60S ribosomal subunits mediate mRNA-independent elongation of nascent chains. Peter S. Shen, Joseph Park, Yidan Qin, Xueming Li, Krishna Parsawar, Matthew H. Larson, James Cox, Yifan Cheng, Alan M. Lambowitz, Jonathan S. Weissman, Onn Brandman, Adam Frost. Science, Jan. 2, 2015. www.sciencemag.org/lookup/doi/10.1126/science.1259724

Bilimin Çözülememiş 10 Gizemi

Bilimin her şeye bir açıklama getirmesi gerektiği, hali hazırda tüm sorulara cevap verebiliyor olması gerektiği çoğu insan için bir önyargı ve karşılanmayacak bir beklentidir. Temelde zamansal bir sorun olan bu eksiklik bilimin doğası gereği bulunmaktadır. Bu sorular cevaplandıkça, bilinmeyenler çözüldükçe gelişen teknoloji ve araştırma yöntemleri ile yeni bilinmeyenler cevaplanacak, bazen bu iki fenomen aynı anda gerçekleşecek ancak sorulacak sorular asla bitmeyecektir.

Bilimciler için de yüzlerce cevaplanmamış soru ve bilinmeyen arasından seçilmiş bu 10 temel bilinmeyene bir göz atalım:

1-Neden Madde miktarı Antimaddeden daha fazla?

bilimin-cozulememis-10-gizemi-bilimfilicom-antimaddeBügünkü parçacık fiziği anlayışımıza göre, madde ve antimadde birbirine eşit ama zıt.. Bu bağlamda; karşılaştıklarında birbirlerini yok etmeleri ve geriye hiçbir şey bırakmamaları ve tüm bu yok etme olaylarının evrenin gençlik döneminde gerçekleşmiş olması beklenirdi. Gel gelelim; eğer bu karşılaşma gerçekleşmiş bile olsa, geriye milyarlarca galaksiyi , yıldızı, gezegeni ve geriye kalan herşeyi oluşturmaya yetecek kadar madde kalmış demektir. Bir çok açıklama, bir kuark ve antikuark‘ın birleşmesinden oluşan kısa-ömürlü mezon’ların etrafında dönüyor. B-mezonlar, anti-B-mezonlar’dan daha yavaş bozunur. Bu da geriye, evrendeki tüm maddeleri oluşturmaya yetecek kadar B-mezon kalmasını sağlıyor. Buna ek olarak B, D ve K-mezonlar antiparçacık haline geçip geri dönebilirler ancak araştırmaların gösterdiğine göre mezonlar daha çok normal fazda bulunma eğilimi gösterdiği için parçacık sayısı anti-parçacık sayısının çok üstünde olabilir.

2-Tüm Lityum Nerede?

bilimin-cozulememis-10-gizemi-bilimfilicom-lityumEvrenin gençlik dönemlerinde sıcaklıklar aşırı yüksekken, hidrojen, helyum ve lityum izotopları bolluk içinde birbirlerine karışıyordu. Evrenin neredeyse tüm kütlesi de hala en yoğun halde bulunan hidrojen ve helyumdan oluşuyor. Ancak gözlemlememiz gereken lityum’un üçte birini gözlemleyebiliyoruz. Peki nerede bu lityum? Mevcut durumda sayısız açıklama mevcut ki bazıları hipotetik atom altı parçacıklardan olan axion’ları kullanırken bazı açıklamalar da büyük yıldızların çekirdeklerinde hapis olduklarını söylüyor. Henüz bunu tespit edebilecek kadar gelişmiş alet , edevat veya teleskopumuz yok. Ancak ne var ki, evrendeki kayıp lityum ile ilgili tüm soruları karşılayabilecek , bütünsel bir teoride mevcut değil.

3-Neden Uyuruz?

bilimin-cozulememis-10-gizemi-bilimfilicom-neden-uyuruzİnsanı normalde 24 saatlik bir uyku/uyanıklık halinde tutan bir biyolojik (sirkadiyen) ritim ile düzenlenen insan vücudu, neden bu uyku haline girmektedir? Yaşamımızın üçte birini harcadığımız uyku sırasında vücudumuzda doku yenilenmesi, artan bir kırmızı kan hücresi üretimi gibi bir çok vücut sistemlerini koruyucu aktivite gerçekleşmektedir. Hiç uyku ihtiyacı olmayan canlılar olduğunu düşündüğümüzde ister istemez aklımıza şu soru geliyor? Neden bizim ihtiyacımız var? Bir kaç fikir olsa da konuya tam bir açıklama getirilemiyor. Evrimsel bir teoriye göre, avcılardan korunma yöntemleri geliştirmiş canlılarda bir vücut dinlendirme mekanizması iken, avcılardan saklanamayan ve daha ayık olması gereken canlılar farklı vücut dinlendirme mekanizmaları geliştirmiş olabilir. Bilimciler tam olarak sebebi bilmiyor olsa da, uykunun önemi üzerine çalışmaya başladılar.

Neden Uyuruz?

 

4-Yer çekimi nasıl çalışır?

bilimin-cozulememis-10-gizemi-bilimfilicom-yer-cekimiHepimiz Ay’ın uyguladığı çekim ile oluşan gel-git’leri, Dünya’nın yer çekiminin bizi yüzeyde tuttuğunu ve Güneş’in çekiminin Dünya’mızı yörüngede tuttuğunu biliyoruz. Ama bu fenomeni ne kadar anlıyoruz. Bu büyük kuvvet maddenin kendisinden kaynaklanıyor bu sebeple daha çok madde içeren daha büyük kütleli objeler daha fazla çekim uygulamaktadır.

Bilimciler yerçekimi ile ilgili bir çok bilinmeyeni açıklığa kavuşturuyor olsa da, gerçekten var olup olmadığı konusunda ciddi şüpheleri var. Neden atomlar çoğunlukla boşluktur? Neden atomları bir arada tutan kuvvet yer çekiminden bu anlamda farklı çalışır? Yer çekimi aslında bir parçacık mı? İşte bu sorular şu anki fizik bilgimizle cevaplayabildiğimiz sorular değil.

5-Herkes nerede?

bilimin-cozulememis-10-gizemi-bilimfilicom-herkes-neredeGözlemlenebilir evrenin çapı yaklaşık 92 milyar ışıkyılı uzunluğunda ve gezegen ile yıldızlarla dolu milyarlarca galaksiden oluşuyor. Buna rağmen bildiğimiz tek canlı hayatı kanıtı burada, Dünya’da bulunuyor. İstatistiki olarak bu genişlikte yalnız olmamız pek mümkün değil ama her nedense herhangi bir başka dünya ile iletişime geçebilmiş de değiliz. Bu fenomen Fermi paradoksu olarak bilinir ve nedeni ile ilgili de düzinelerce varsayım bulunmaktadır. Belki de bize ulaşmaya çalışanların gönderdikleri sinyalleri alamıyoruz, belki henüz öyle bir teknolojiye sahip değiliz, ya da bizimle iletişime geçmek istemiyor olabilirler. En düşük ihtimalle de, bizler bu evrendeki tek canlı yaşayan gezegende bulunuyoruz.

6-Kara madde neden yapılmıştır?

bilimin-cozulememis-10-gizemi-bilimfilicom-karanlik-maddeEvrendeki tüm maddenin %80’i kara maddeden oluşmaktadır. Kara madde ise son derece kendi halinde (hiç ışık  yaymayan) varlığı yokluğu belli olmayan bir maddedir. İlk kez 60 yıl önce hakkında kesin bir kanıt olmadan bir teoride yerini aldı. Bir çok bilimci, kara maddenin olarak bilinen (WIMP’lerden) oluştuğunu düşünür, ki bu onu bir protondan 100 kat daha ağır bir madde yapar. Gel gelelim kara madde şu an için baryonik madde (kompozit bir atomaltı parçacık) ile etkileşime girmediği için tespit edilemiyor. Diğer fikirsel tasarılarda kara maddenin axion, nötralino ve fotinolardan oluştuğu varsayılmaktadır.

7-Yaşam Nasıl Başladı?

bilimin-cozulememis-10-gizemi-bilimfilicom-hayat-nasil-basladiDünya’daki yaşam nereden geldi? Neyden kaynaklandı? Nasıl gerçekleşti? Bu başlangıcın, besin yönünden zengin  enç Dünya’da, gittikçe daha kompleks kimyasalların evrimleşmesine yol açacak bir ” ilksel veya ilkel çorba” ile olduğunu düşünenler, bu sürecin de okyanusların dibinde, buzulların altındaki killerde gerçekleşmiş olabileceğini savunuyor. Daha farklı modeller de, yaşamın patlamasını değişen oranlarda, Dünya’ya gelen ışığa, volkanik aktivitelere bağlıyorlar. Dünya’daki yaşamın baskın temeli olan DNA’ya nazaran ilk yaşam formlarında RNA’nın daha yaygın olduğu varsayımı da bulunuyor.

Bunlara ek olarak, bir grup bilimci ise DNA ve RNA‘dan farklı nükleik asit moleküllerinin bir süre yaşamı idare etmiş olabileceğini savunuyor veya en azından bu ihtimali de değerlendiriyor. Yaşam bir kere de mi başladı, yoksa arada tamamen yok olup tekrar mı başladı?

Bazıları, canlı hayatının gök taşları ve kuyruklu yıldızlar üzerinde mikrobiyal canlılarla Dünya’ya taşındığını düşünseler de, bu da Dünya’ya ulaşan bu yaşamın nasıl başladığını hala bir soru işareti olarak bırakıyor?

8-Plaka tektoniği (Kıta kayması veya hareketi) nasıl gerçekleşir?

bilimin-cozulememis-10-gizemi-bilimfilicom-kita-kaymasiŞaşırtıcı gelebilir ama, kocaman kıtalar, kıta levhaları (plakaları) kayarak geziyor ve bu sırada depremlere sebep oluyor, dağları ve diğer yer şekillerini oluşturuyor, kıtaların organizasyonu sağlanıyor hatta volkanik patlamalara sebep oluyor. Kıtaların bir araya gelip tek bir parça oluşturabileceği fikri ilk kez 1500’lerde ortaya atılmıştı (elbette bugün haritaya bakan herkes bunu anlayabilir) ama yaklaşık 400-450 yıl pek ilgi çekmedi. Hoş kanıtlayacak pek bir şey de yoktu elde..

1960’lara gelindiğinde ise Deniz-yer ayrılması hipotezi ile manto tabakasına karışan denizin dibindeki kara parçalarının eriyik halde volkanik patlamalar sonucu magma olarak tekrar yüzeye çıkıyor ve bu şekilde bir devir-daim gerçekleşiyor olması ilk kez fiziksel bir kanıtla gün yüzüne çıkarıldı. Bu döngü bilinse de, bilim insanları bu hareketliliğin ve gezici kıtalar durumunu neyin kontrol ettiğini ve kıta şekillerini ortaya çıkaracak kopmaların temel sebebini kestiremiyor. Bir çok teorinin bulunduğu alanda, hiç bir teori tam olarak tatmin edici tam bir cevap içermiyor.

9-Hayvanlar nasıl göç eder?

bilimin-cozulememis-10-gizemi-bilimfilicom-hayvanlar-nasil-goc-ederBir çok hayvan ve böcek türü mevsimsel sıcaklık değişimlerinden ve bu değişimlerin yaratacağı besin kaynağı ve eş bulma sıkıntılarından korunma amaçlı yıl içi göçler gerçekleştirmektedir. Bu göçler kimi zaman binlerce kilometre tek bir yöne doğru ilerlemeyi içermektedir. Bu durumda ise nasıl geri dönüp ilk yerlerine ulaştıkları bilinmemektedir. Farklı hayvanlar farklı yön tayin metotları kullanır. Öyle ki bazı hayvanlar Dünya’nın manyetik alan yönünü bir pusula gibi algılar ve yön tayini yaparlar. Yine de, bilim insanları bu davranış şeklinin ve evrimsel özelliğin nasıl ortaya çıktığını, işleyen mekanizmaları, hiç bir eğitim almamış hayvanların nasıl mevsimden mevsime gidecekleri yönü net olarak tayin ettiklerini anlayabilmiş değil.

10-Kara enerji nedir?

bilimin-cozulememis-10-gizemi-bilimfilicom-karanlik-enerjiBilimin tüm gizemlerinin içinde, kara enerji en anlaşılmazlarından birisi sayılabilir. Kara madde toplam kütlenin %80’inini oluştururken, kara enerji‘ninde tüm enerji içeriğinin %70’ini oluşturduğu varsayılmaktadır. Evrenin genişlemesinin en temel sebebi ve itici kuvveti olarak bilinen kara enerji, sadece ona atfedilen bu yetenekten dolayı bile onlarca bilinmeyenin ortasında kalıyor. İlk ve en önemlisi tam olarak neyden yapıldığı bilinmiyor. Kara enerji sabit midir? Yoksa evren genişledikçe belli dalgalanmalar gösterir mi? Neden kara enerjinin yoğunluğu sıradan madde ile uyuşmaktadır? Kara enerji, Einstein’ın kütle çekim teorisi ile uyuşuyor mu, yoksa kara enerjinin varlığı teorinin yeniden gözden geçirilmesine mi sebep olacak?

 


Kaynak : Bilimfili, IFLS, Lisa Winter, Top 10 Unsolved Mysteries of Science, <www.iflscience.com/physics/top-10-unsolved-mysteries-science>, June 25, 2014