Sentetik Biyolojik Saat Üretildi

Sentetik Biyolojik Saat Üretildi

Özellikle bilim dünyası dışındaki insanlar arasında “sirkadiyen saat” metaforik bir tanım gibi algılanır. Latince anlamıyla ‘gün döngüsü’ anlamına gelen terim vücut içi biyolojik aktivitelerin düzenlenmesini ve gün içinde hücre düzeyinde, hormon seviyesinde ve beyindeki aktivitelerdeki düzenli değişimi ifade eder. Elbette insan vücudunun içinde tik-tak atan bir saat ve gece-gündüz geçerken vücuda yardımcı olan bir saat bulunmuyor. Ancak Harvard Medical School (HMS) ve Wyss Institute’ten sentetik biyologlar tam da bunun gibi somut, transplante edilebilir bir biyomühendislik ürünü 24-saatlik bir saat üretmeyi başardı. Saat, kendi içinde tipik bir sirkadiyen ritmi olmayan bir bakteriye yerleştirildikten sonra kendi kendine çalışmaya başlayabildi.

Araştırmalarını geçtiğimiz hafta Science Advances dergisinde yayımlayan ekip,Synechococcus elongatus fotosentez yapabilen siyanobakterilerde sirkadiyen ritm altında yatan mekanizmayı incelemekle işe başladı. Bu bakteriler gece ve gündüz döngülerini düzenlemek üzere üç temel protein kullanır. Daha önceki araştırmalarda, hatta test tüplerinde bir araya getirildiklerinde dahi, bu üç proteinin düzenli bir sirkadiyen ritm ile bağlanıp ayrıldıkları gözlemlenmişti. Araştırmacılardan Anna H. Chen, bu üç proteini kullanarak – belli bir düzende biyolojik aç-kapa fonksiyonu yürütebilen – bir osilatör üretti ve bunu bağırsak bakterisi Escherichia coli‘ye transplante etti.

Sentetik biyologlar için, bu proteinleri tanılamak ve görevlendirmek üzere kullanılan işlemler gayet iyi anlaşılmış durumda. Böylelikle bu araçları doğru bir şekilde bir araya getirecek ve aynı mekanizmayı sağlayacak sistemi yapmak, bilgilerin doğruluğunu da kanıtlamış oldu. Ekip osilatörde ‘downstream‘ çalışacak bir flüoresan protein işaretleyici üretti.  Üç günlük bir periyottan sonra, osilatörün 24 saatlik dilimlerde düzenli şekilde aç – kapa işlevi gördüğünü ve sirkadiyen olmayan E. coli‘lerde bu ritmisiteyi yarattığı gözlemlendi.

Researchers have transplanted a circadian clock from cyanobacteria into a gut microbe, E. coli.

Araştırmacılar siyanobakterilerde bulunan bir biyolojik saati sistemleştirip bağırsak bakterisi E. coli‘ye transplant etti. Görselde; siyanobakterilerde sirkadiyen ritmi düzenleyen Kai A B ve C proteinleri ile saat düzeni anlatılıyor. Sağda, gün içinde bu protein sistemine bağlanan flüoresan proteininden yayılan ışığın üç günlük bir zaman da ritmik değişim grafiği gösterilmiş.

Sonuçta, vücuda yerleştirilebilen, 24 saatlik sirkadiyen saat üretildi. Diğer araştırmacılar, daha önceleri belli bir zaman gecikmesi veya daha küçük bir zaman aralığında ritm yaratmayı başarmıştı. Mevcut araştırmada ilk kez 24 saatlik bir döngüyü kullanan ve tüm yaşamsal zamanla ilişkili bir sistem üretildi. Deney; belli bir prensibi kanıtladı. Şimdi de, bilimciler mevcut flüoresan işaretleyici proteini, diğer günboyu yada günlük döngülere bağlayarak kullanım alanlarını genişletmeye çalışacak.

Chen, muhtemel medikal kullanım alanlarına dikkat çekerek, insan sağlığında mikrobiyomların geniş kullanım avantajlarını belirtti. Daha dikkat çekici bir unsur olarak, bu araştırmada üretilen sistem çevre ile uyumsuz çalışan veya çalışmayan vücut saatleri olan insanlara çok yardımcı olabilir. Bu sistem ile obezite ve glukoz intoleransı gibi bağırsak bakterilerinin biyolojik ritminin olmamasına bağlanan rahatsızlıklar da tedavi edilebilecek. Sentetik olarak tasarlanmış vücut saatleri ile ilaçların vücuda tam doğru zamanda etki etmesi ve endüstriyel amaçlarla kullanılan mikrobiyal canlıları kontrol etmekte de kullanılabilecek.

Araştırma laboratuarının nihai hedefine ulaşması için büyük bir adım atıldığı kaydedildi. On yıldan fazla bir süredir, araştırmacılardan Pamela Silver, biyolojik bir zamanlayıcı üretmekle ilgilendiklerini söylüyor. Bu zamanlayıcının günden güne geçişi sağlayan ritmi ya da hücrenin belli bir uyarıcıdan sonra ne kadar zaman geçtiğini hesaplayabilmesini sağlayacak şekilde üretmeyi denediler.

Ekibin beklentisi ise diğer araştırmacıların sirkadiyen saat aletini geliştirerek çok çeşitli kullanımını mümkün kılmaları. Zaten tüm amaç da bu, saatin başkaları tarafından kullanılması.

 


Referans :
  • Bilimfili,
  • HarvardMagazine, Engineering an Internal Clock, harvardmagazine.com/2015/06/engineering-circadian-clock
  • Anna H. Chen, David Lubkowicz, Vivian Yeong, Roger L. Chang and Pamela A. Silver Transplantability of a circadian clock to a noncircadian organism Science Advances 12 Jun 2015: Vol. 1, no. 5, e1500358 DOI: 10.1126/sciadv.1500358

Bakteriler Dünyayı Bizim Gibi Görebiliyor

300 yıldan fazla süredir devam eden araştırmaların sonunda, bilimciler nihayet bakterilerin dünyayı nasıl gördüğünü açığa çıkardı. Meğer bunu bizim yaptığımıza çok benzer biçimde yapıyorlarmış. İngiltere ve Almanya’da çalışan araştırmacılardan oluşan bir ekip tarafından, bakteriyel hücrelerin temelde mikroskobik bir göz küresigibi davrandıklarını, yani aslında dünyadaki en eski ve en küçük kameralar olduklarını belirten bir makale eLifedergisinde yayımlandı. “Bakterilerin dünyayı aynı bizim gibi gördüğü fikri oldukça heyecan verici,” diyor Queen Mary Üniversitesi’nden ekip lideri Conrad Mullineaux.

Siyanobakteriler (İng. cyanobacteria) su kütlelerinde bolca bulunur; ayrıca kayaların ve çakılların üzerinde yeşil kaygan bir katman da oluşturabilirler. Yapılan çalışmada kullanılan Synechocystis türü siyanobakteriler doğada taze su göllerinde ve nehirlerde yaşar. Yaklaşık 2.7 milyar yıl önce evrimleşen siyanobakteriler güneşten gelen enerjiyi kullanarak karbondioksiti oksijene çevirir. Fotosentez bu bakterilerin yaşamlarını sürdürmesinde kritik rol oynadığından, bilimciler onların ışığı nasıl algıladıklarını anlamanın peşindeydiler. Daha önce yapılan çalışmalardaışık algılayıcılarına (foto-sensörlere) sahip oldukları gösterilmiş ve bir ışık kaynağının konumunu algılayıp, ona doğru ilerledikleri ortaya konmuştu. Bu görüngüye “ışığa gitme” (ışığa göç, fototaksi. [İng. phototaxis]) adı verildi. Fakat böylesine küçük hücrelerin bunu nasıl başarabildiği anlaşılamamıştı.

Yeni yapılan çalışma bakterilerin bunu yapabilmelerini, hücre gövdesinin bir lens görevi görmesine borçlu olduklarını açığa çıkardı. Bakterinin görme mekanizması şöyle işliyor: Tek hücreli organizmanın küresel yüzeyine çarpan ışık, tıpkı minik bir lenste olduğu gibi odaklanıyor. Böylece hücrenin diğer yanında bir odak noktası oluşuyor. Bakteri hücresine düşen görüntü, retinadaki gibi ters oluyor. Ancak çözünürlüğü çok düşük olduğundan, bakteri miyop insanların görüşüne benzer biçimde nesnelerin sadece dış hatlarını seçebiliyor. Dakikalar içinde bakteriler “pili” adı verilen, minik dokunaç benzeri yapılar geliştiriyor. Odak noktasındaki yüksek ışık yoğunluğundan uzaklaşmak, dolayısıyla ışık kaynağına doğru ilerlemek için pililer üzerinde oldukları yüzeye tutunup, kendilerini geri çekiyorlar. Böylece bakterinin ilerlemesini sağlıyorlar. Çalışmada kullanılan synechocystis sp. PCC 6803 türü siyanobakterinin, Tip IV pililer ile ilerlediği, bir dizi fotoreseptör sayesinde ışık yoğunluğunu ve rengini ölçtüğü belirlendi.

Bakterilerin ışığa ilerleyişini açıklamak için yapılan önceki tüm girişimler sonuçsuz kalmıştı; çünkü sadece birkaç dalgaboyu uzunluğundaki bu organizmaların, hücrenin ön ve arka taraflarındaki ışık arasındaki farkı algılayamayacak denli küçük oldukları düşünülüyordu. Ancak bakterinin tüm gövdesi bir lens gibi işlediğinden, organizma ışığı odaklayabiliyor. Bu da hücre içinde bariz bir ışık miktarı farkı yaratıyor.

“Bakterilerin ışığa verdikleri tepki, onların davranışı hakkında yapılmış en eski bilimsel gözlemlerden biridir. bakterilerin optik nesneler olmasına ilişkin gözlemimiz sonradan apaçık belli bir şeymiş gibi geldi; ama görene dek bu hiç aklımıza gelmemişti. Buna daha önce hiç kimse dikkat etmemişti; üstelik mikroskop altında son 340 senedir incelenip durdukları halde,” diyor Mullineaux.

Bulgular, bakteriler ile daha karmaşık çok hücreli organizmalar arasındaki yakınsak evrime (aralarında doğrudan evrimsel bağ bulunmayan canlıların, geçirdikleri değişimlerle birbirlerine benzer özellikler geliştirmesine) iyi bir örnek oluşturuyor. “Işığın bakteriler tarafından algılanmasının fiziksel ilkeleri ile hayvanlardaki çok daha karmaşık görme duyusunun fiziksel ilkeleri benzer; fakat biyolojik yapılar farklı,” diyor Freiburg Üniversitesi’nden ekip üyesi Annegret Wilde.

Bir synechocystis hücresi, insan gözünden yarım milyar kat daha ufaktır. Gözdeki retinada olduğu gibi hücrenin arkasına düşen görüntü ters olur. Görüntü çözünürlüğünün çok daha düşük olmasının nedeni ise optik nesnelerin ince ayrıntıları ayırabilme becerisinin “açısal çözünürlük“e bağlı olmasıdır. İnsan gözünde bu 0.02 derece gibi etkileyici bir değer alır. Araştırmacılar synechocystis bakterisinde bu değerin yaklaşık 21 derece civarında olduğunu tahmin ediyorlar.

Bakteriler optik nesnelerdir. Herbir hücre mikroskobik bir göz küresi gibi davranır. Credit: eLife

 


Kaynaklar:

  • Bilimfili
  • Phys.org, “Slime can see: Scientists discover that slime-forming bacteria act as optical objects”
    < http://phys.org/news/2016-02-slime-scientists-slime-forming-bacteria-optical.html >
  • Freiburg Üniversitesi, “Shedding Light on Bacteria
    < https://www.pr.uni-freiburg.de/pm/2016/pm.2016-02-09.17-en >

İlgili Makale: Nils Schuergers et al. Cyanobacteria use micro-optics to sense light direction, eLife, 2016; 5 DOI:10.7554/eLife.12620

Üst Görsel: Nils Schürgers, “Bakterinin küresel yüzeyine çarpan ışık, lenslerde olduğu gibi hücrenin diğer yanında bir odak noktası oluşturuyor.”