Bu farklı genlerin hepsi farklı görevleri olan proteinlerin sentezlenmesine yardımcı olurlar ve böylece ön-arka eksen boyunca farklı yapıların oluşmasına yardımcı olurlar.
Bu sinek türünde 8 adet HOX geni mevcuttur. Homo sapiens’te ise bu genlerin sayısı daha fazladır. Aşağıdaki tablodan bizlerde bulunan HOX genlerini görebilirsiniz.
Dikkat ettiyseniz sinek türünde de bir primat türünde de HOX genleri bulunmaktadır ve ana işlevleri aynıdır. Bu genlerde oluşabilecek bir mutasyon, yapısal bozukluklara yol açabilir. Örneğin gelişimi sırasında bir kelebekte HOX genlerinde mutasyon olması durumunda ekstra kanat oluşabilir, benzer bir durum da insanlarda parmak sayısının artması şeklinde görülebilir. Bazı omurgalılarda ise, HOX genlerinin mutasyonu sonucu omurgalarında problemler oluşabilir. Yani tüm hayvanlar aleminde bu genler mevcuttur ve aktiftir. Bu da HOX genlerinin evrimsel kökeninin çok eskiye dayandığının kanıtıdır.
Sonik Kirpi Geni
Gelişim sürecinde etkili olan bir diğer önemli gen ve bizim de asıl ilgilendiğimiz gen olan Sonik Kirpi genidir. Bu gende kodlanmış olan ve daha sonra sentezlenecek olan Sonik Kirpi proteinleri, embriyonik gelişim boyunca uzuvların, beynin ortahattının, spinal kordun ve dişlerin gelişimini düzenler. Düzenleme mekanizmasının detayına girmeden önce genin keşfinden ve isimlendirilmesinden biraz bahsedelim.
1950 ve 60 yıllarda bir grup biyolog iskelet modelinin nasıl oluştuğunu anlamak için tavuklar üzerinde deneyler yaptılar. Bu deneylerdeki amaç embriyoların dokularının gelişim üzerine etkisiydi. Gelişim evresindeki üyelerin dokularıyla ilgilenen Edgar Zwilling ve John Saunders isimli bilim insanları üyelerdeki kemik düzeninin gelişimini 2 tane dokunun kontrol ettiğini buldular. Devam eden çalışmalarda farklı bakış açıları kazanılmış oldu. En ilgi çeken ve araştırmacılar sonuca en fazla yakınlaştıran deney ise bir tavuk embriyosu üzerinde yapıldı. Bu deneyde, gelişimin ilk evrelerindeyken, üye tomurcuğunun serçe parmağın oluşacağı tarafından alınan bir doku parçası diğer tarafa, birinci parmağın oluşacağı yerin hemen altına aşılandı. Civciv gelişmeye ve kanat oluşturmaya bırakıldı. Kanat gelişimi normaldi; ancak, parmak takımının tam bir kopyası oluşmuştu. Daha tuhaf olansa, parmakların yerleşim düzeniydi: yeni parmaklar, normal parmak takımının ayna görüntüsü şeklinde dizilmişti. Belli ki doku parçasının içindeki bir şey, belki bir molekül veya gen, parmakların yerleşim düzeninin gelişimini yönlendirebiliyordu.
Bu sonuç, art arda bir dizi başka deneyle defalarca tekrarlandı ve söz konusu etkinin pek çok değişik yolla ortaya çıkabileceği anlaşıldı. Devam eden araştırmalar sonucunda bu aşılanan doku parçasına, kutuplaştırıcı etkinlik alanı (Zone of Polarizing Aktivity – ZPA) adı verildi. Parmak oluşumu için ZPA’da bulunan ve henüz ne olduğu keşfedilemeyen molekülün konsantrasyonunun önemli olduğu düşünülüyordu. Bu doğrultuda yapılan bir deneyde, ZPA parçası ile üyenin geri kalan kısmı arasına çok minik bir folyo parçası yerleştirildi. Amaç, bu folyoyla ZPA’dan diğer tarafa herhangi bir molekülü geçirmeyecek bir bariyer oluşturmaktı. Araştırmacılar, bu bariyerin her iki yanındaki hücrelere ne olduğunu inceledi. ZPA tarafındaki hücreler parmak oluştururken, diğer taraftakiler çoğunlukla oluşturmuyor, oluşturduklarında ise ciddi kusurlar ortaya çıkıyordu. Bu deneyden sonra konsantrasyonun önemli olduğu da kesinleşmiş oldu.
İlerleyen yıllarda, genetik biliminin de gelişmesiyle, Drosophila melanogaster üzerinde yapılan deneylerde bir tür genin kanat oluşumuna yardımcı olduğu bulundu ve bu gene “Kirpi” geni dendi. Araştırmacılar hemen diğer hayvanlarda da bu geni aramaya koyuldu ve ZPA’da aktif olan bu genin diğer hayvanlarda da olduğunu buldular.
İsimlendirme de basitti; araştırmanın yapıldığı sineklerde bir kirpininkine benzer dikenler vardı. Bu yüzden de “kirpi geni” ismi verildi. Bu genin tavukta bulunan versiyonuna ise bir video oyunundan da esinlenerek “sonik kirpi geni” dendi.
Kirpi proteini ailesi memelilerde üç bireye sahiptir. Hint Kirpi Proteini bunlardan biridir ve endokondral kemikleşme sürecinde görev alır. Diğeri Çöl Kirpi Proteinidir ve bu protein ise morfonogenez sürecinin kontrolüne yarayan sinyalleri kodlar. Son üyeleri ise biraz önce de görevlerinden bahsettiğimiz Sonik Kirpi Proteini.
Sonik kirpi proteinleri aslında embriyolojik gelişim sırasında birçok sinyal merkezinden salgılanan sinyallerdir. Örneğin, nöral tüpün karın bölgesindeki kutuplaşmayı başlatması için notokord (embriyonun iskeletine verilen isim) tarafından gönderilen bir sinyal olarak da karşımıza çıkabilir.
Bu protein üzerinde yapılan çalışmalarda, parmak gelişimi ve kutuplaşmasında nasıl görev aldığı net olarak anlaşılmıştır. Sonik kirpi genin transkripsiyonu kolu/bacağı oluşturacak tomurcukların merkezden uzak ucunun ektodermal yapısından salgılanan ikinci set sinyallerin varlığında gerçekleşir. Bu sinyaller transkripsiyonu tetikler. Fakat henüz bu sinyallerin sonik kirpi genini nasıl hedef aldığı net bir şekilde anlaşılamamıştır. Genin moleküler işlemeleri endoplazmik retikulumda gerçekleşir (tranlasyon ve kontrol işlemleri her protein için aynı şekilde işlediğinden o kısmı tekrar anlatmıyoruz). Bu işlemenin ardından sonik kirpi proteinine kolesterol bağlanır, kolesterolün bu süreçte en önemli rolü Sonik kirpi genini hücre zarı içerisindeki aktivite alanını ve hücre dışına salınımını sırasındaki difüzyonunu kısıtlamasıdır. Kolesterolün farklılaşması sonucunda Smith–Lemli–Opitz sendromu gibi bazı doğuştan gelen sorunlar oluşabilir. Kolesterolün bağlandığı protein amacına uygun olan yere gitmek üzere hücre dışına çıkar. Gerekli merkeze ulaşır ve burada üzerine düşen görevi yapmaya başlar.
Bu genin kol/bacak tomurcuklarının uçlarındaki mezenşimin hücrelerinde ifadelendirilmesi, uzvun ön-arka eksen gelişimi için son derece önemlidir. Farelerde bu genin eksikliğinde uzvun yapısal olarak düzgün gelişmediği görülmüştür.
Ayrıca polarizasyonu sağlaması sayesinde de elimizin bir ucundaki parmak diğerinden farklıdır.
Bu mekanizmanın düzenli çalışması uzuvların düzgün bir şekilde oluşması demek oluyor ve başta dediğimiz gibi, doğada yaşamını devam ettirmek için kovalamaca oynamak zorunda olan canlılar için ise bu mekanizmanın önemi daha fazla. İşte yaşamayı kolaylaştıran, avı yakalamayı, avcıdan kaçmayı sağlayan uzuvların oluşumu genel olarak bu ve bu tarz süreçler sonucu ortaya çıkıyor. Bizlerin atalarının evrimsel süreçte tırmanmak için ve kavramak için avantaj sağlayan parmaklarının gelişmesini de sonik kirpi genlerine borçluyuz. Muhtemelen bu genlerden mahrum kalanlar nesillerini devam ettiremediler ve doğa tarafından elendiler. Bizler ise, başarılı genlerin eseri olarak bugünlere geldik.
Uzuv ve parmak oluşumunu etkileyen tek transkripsiyon faktörü yalnızca sonik kirpi proteini değil tabii ki, fakat şu ana kadar mekanizması en iyi anlaşılmış olan ve üzerinden en çok çalışılan protein bu proteindir. Bir kuşun kanadı, bir balinanın yüzgeci veya bir insanın elini genetik olarak karşılaştırdığımızda sonik kirpi genine ulaşabilmekteyiz. Bu genin de evrimsel geçmişi HOX genleri kadar eskiye dayanıyor ve evrimin gerçekliğini bir kez daha gözler önüne seriyor.
Kaynaklar ve İleri Okuma:
Yorum yazabilmek için oturum açmalısınız.