Güneş Kreminin İçinde Ne var?

Güneş Kreminin İçinde Ne var?

Yaz ayları belli bir kesim için dinlenme, eğlenme veya tatil yapmaktan fazlasını ifade edebilir. Örneğin, diğer mevsimler boyunca büyük çoğunlukla kapalı kalmış tenin, görece soluk olan rengini tekrar canlandırma, bronzlaştırma veya yakma gibi. Güneş ışığının değerli bir takım ışın cinslerinden yararlanarak karşılayabildiğimiz bu ihtiyaç her defasında bizi bir ikileme maruz bırakır: Derimizi yakmamızı ve dolayısıyla bronzlaşmamızı sağlayan ultraviyole (UV- mor ötesi) ışınlarla savaşan veya başka bir deyişle zararlı etkilerine karşı duran bir krem ile vücudumuzu kaplamak ya da bronzlaşmak için deri kanseri riskini artırmak (yalnızca beş güneş yanığı deri kanseri riskini iki katına çıkarmaktadır). 

Şimdi ise ünlü bir kozmetik markası adına araştırmalar gerçekleştiren bilim insanları Micromesh teknolojisine dayanan bir formül geliştirerek klasik yapışkan ve kalın dokulu kremlerin aksine; hafif, ancak deriyi ultraviyole ışınlardan aynı şekilde korumayı  başardı. Ne var ki, gün içinde terledikçe etkisini kaybedebilen bu kremi aynı etki için iki saatte bir yeniden uygulanması gerekiyor.

Kendi içinde zararları olmasına karşılık bu tip gelişmeler sürekli olarak kaydediliyor. Peki, güneş kremlerinin başarısını ne sağlıyor veya güneş kremlerinin içinde hangi madde veya moleküller bulunuyor? Bunlardan etken olan bazılarını aşağıda sizlerle paylaşıyoruz :

Avobenzone (Avobenzon)

Deriye zarar veren UV (ultraviyole) radyasyonun, UVA ve UVB olmak üzere 2 çeşidi vardır. UVA ışınları Dünya’ya ulaşan ultraviyole ışınlarının yüzde 95’ini oluşturmakta ve deriye derinlemesine işleyebilmektedir. Avobenzone maddesi ise UVA radyasyonu absorbe edebilmekte ve bu vesileyle önemli oranda birincil koruma sağlamaktadır.

Bu maddenin tek sorunu ise, bir kez güneş ışığı ile karşılaştığı anda form değiştirerek UVA radyasyona karşı etkisiz hale gelmesidir. Bu noktada da yardıma oktokrilen koşuyor.

Octocrylene (Oktokrilen)

Bu yağlı sıvı avobenzon (avobenzone)un UVA’yla savaşına devam etmesine imkan sağlayan bir formda kalmasına yardımcı bir stabilizatördür.
Tocopheryl Acetate (Tokoferil Asetat)

UVA ışınları deriye nüfuz ettiğinde, oksidatif strese neden olabilmektedir. Bu da UVA ışık hüzmelerinin, moleküller arası bağların düzensiz şekilde kopması; dolayısıyla eşlenmemiş elektronları bulunan atomların vücuda yayılması anlamına gelmektedir. Moleküler düzeyde hem genetik, hem epigenetik hem de reaksiyon dengesi açısından olumsuz sonuçlar doğurabilecek bu durum, bahsedilen yollar vasıtasıyla başka bir takım sağlık sorunlarına da yol açabilmektedir.

Bu tip, kararsız serbest radikallerin vücuda yayılıp diğer moleküllerden elektron çalmalarını engellemek için, tokoferil asetat olarak bilinen E-vitamini temelli antioksidan molekül, bu serbest radikallere elektron bağışı yapar. Böylelikle nötralize olan radikaller; zarar verici potansiyellerini kaybetmiş olur.

Acrylates/Dimethicone Copolymer (Akrilat / Dimetikon Kopolimeri)

Film yapıları oluşturan bu moleküler ajan, birçok kozmetik ürününde bulunmakta ve UV ışınlara karşı savaşabilen moleküllerin homojen bir biçimde dağılmasını sağlar. Komik olan şu ki, bu maddeyi oluşturan birimlerden dimetikon molekülü oyun hamuru yapımında da kullanılıyor ve sıradan güneş kremlerinin kalın katmanlı yapıda olmasına sebep oluyor.

Silika (Silisyum Dioksit)

“Do Not Eat (Yemeyiniz)” jel paketlerinin içerisindekilere benzer şekilde, bu havalı mineral, kalıntıları bir sünger gibi içine çekerek losyonun parlak iz bırakmasına engel olur (Ürünün birçoğu temelde yağ içerisine hapsedilmiş su halindedir.) Uygulama sonrasında, su buharlaşır ve terlerin kaçmasına olanak sağlayan mikrokanalları oluşturur (Markanın Micromesh teknolojisi olarak adlandırdığı uygulama)

PEG-30 Dipolihidroksistearat

Bir emülsiyonlaştırıcı olan bu madde, yağsı ve stabil bir madde halinde krem içeriğinin çözelti olarak sabitleştirilmesini sağlar. Aynı zamanda kremin vücutta yapışkan bir etki yapmasını da engelleyen bileşik (veya başka PEG bileşikleri) diş macunu gibi diğer banyo malzemelerinin de içinde bulunmaktadır.


Kaynak :

  • Bilimfili,
  • Wired Science, VICTORIA TANG, What’s Inside Sunscreen? The Same Stuff That’s in Silly Putty, 9 Temmuz 2106, www.wired.com/2016/07/whats-inside-sunscreen-stuff-thats-silly-putty/?mbid=social_fb

MORÖTESİNİ GÖRMEK

Claude Monet, Nympheas, 1915 ( Kaynak: Wikipedia)

“Sonunda, resimleri artık doğru düzgün yapmak bir kenara, onları iyice bozduğumu fark ettim. Birkaç tablomu bu nedenle imha ettim.  Artık neredeyse körüm, ve bundan böyle resim yapmayı bırakmam gerekiyor. Bunu kabullenmem çok zor, ressamlık kariyerim bitiyor, ve sağlığım gözlerim harici neredeyse mükemmel!”

Yukarıdaki satırlar, empresyonist resim akımının öncüsü olan, hatta bu akıma Impression, Sunriseisimli tabloyla adını veren ünlü ressam Claude Monet‘e ait. Monet, bu satırları ölümünden 4 yıl önce, 1922 yılında, yakın dostu Marc Elder’a gönderdiği bir mektuba yazmıştı.

Monet’in görme ile ilgili sıkıntıları 1905 yılında, 65 yaşındayken başlamıştı. Renkleri kendine özgü bir şekilde kullanarak manzaradaki dokuyu keskin fırça darbeleriyle resmetmesiyle ünlü olan Monet, artık renkleri eski yoğunluğunda göremez olmuştu. Resimlerindeki mavi, beyaz ve yeşil renkler zamanla daha bulanık sarı ve mor tonlara doğru kaymaya başlamıştı. 1915 yılında, resimleri iyice bulanıklaşmaya ve donuklaşmaya başlayan Monet, parlak kırmızıları, donuk ve soluk pembeler olarak görmekten ve tüm görüşüne hakim olan sarı tonlardan şikayet ediyordu.

Katarakt (Kaynak: Wikipedia)

Monet’in bu şikayetlerinin nedeni, ileri yaşlarda oldukça sıklıkla gözlenen katarakt rahatsızlığına bağlıydı.

Katarakt, göz küresi içinde bulunan göz merceğinin kendisinin veya merceği saran zarın şeffaflığını kaybederek ışık geçirgenliğinin bozulmasına verilen isim. Çoğunlukla ileri yaşa bağlı olarak göz merceğinin yapısının bozulması sonucu ortaya çıksa da, nadiren çocuk ve bebeklerde de görülebiliyor. Opak hale gelen göz merceği, gözün içine giren ışığı engellediği için, zaman içinde hastanın görmesinin bozulmasına neden oluyor. İlk belirtisi renklerin matlaşması ve bulanık görme olan katarakt, tedavi edilmediğinde körlüğe bile neden olabiliyor.

 

Katarakt, göz merceğinin şeffaflığını kaybederek opaklaşması sonucunda ortaya çıkan bir hastalık.    (Kaynak: Yeditepe Üniversitesi web sitesi)

Merceğin saydamlığının bozularak, opak hale gelmesine neden olan pek çok faktör var. Bunların en başında uzun süreli ultraviyole ( morötesi – UV) ışınlara maruz kalmak geliyor. Hepimizin maruz kaldığı UV ışınların ana kaynağı ise Güneş, bu nedenle de kataraktlar güneş altında geçirdiğimiz süreyle paralel olarak,  ileri yaşla birlikte daha sık görülmeye başlıyorlar. UV ışınları haricinde şeker hastalığı, hipertansiyon, travma, yaşlılığa bağlı olarak lens yapısındaki bozulmalar da katarakt oluşumuna katkıda bulunabiliyor. Pilot ve astronotlar, atmosferin üst tabakalarında bizlere göre daha fazla UV ışınlarına ve  iyonize radyasyona maruz kalıyorlar, Apollo uzay projesinde görev alan 39 astronotun, 36 tanesine uzaydaki görevlerini takiben erken dönem katarakt tanısı konmuş.  Demir çelik işçileri, cam işçileri gibi yüksek ısıya maruz kalan kişilerde de normaldan daha fazla oranda katarakt görülüyor.

Katarakt, günümüzde tedavisi oldukça kolay bir hastalık. İlerlemiş cerrahi tekniklerle, gözün ön kamarasına girilerek artık görevini tam anlamıyla yerine getiremeyen opaklaşmış lens bütün olarak veya parça parça çıkarılıyor.  Çıkarılan eski lensin yerine, şeffaf yapay bir lens takılıyor.  Ortlama süresi 30 dakika gibi kısa ve başarı oranı %90’ın üzerinde olan bu girişim sayesinde hasta, ameliyatı takiben çok kısa bir sürede hastalalığından önceki net ve berrak görüşüne kavuşuyor.

Göz lensinin yaşa bağlı dejenerasyonu. Yukarıdaki lensler 79, alttakiler ise 39 yaşındaki bir hastadan alınmış. Daha yaşlı hastadan alınan lenslerin şeffaflıklarını kaybederek sarımtırak bir görüntü aldığını görebilirsiniz. (Kaynak: St. Louis Üniversitesi, Biyoloji Bölümü, William Stark Lab )

Modern katarakt ameliyatının geliştirildiği 1940’lara dek, tarih boyunca pek çok hekimin sayısız kişinin kör olmasına neden olan bu hastalığı tedavi etmeye çalışığını biliyoruz. Göz anatomisini anlamaya başlayan ve kataraktın matlaşan lense bağlı olduğunu fark eden hekimler, eski çağlarda katarakt hastalarını gözlerindeki işlevini yitiren lensi çıkartarak tedavi etmeye çalışıyorlardı. Katarakt ameliyatına ilişkin ilk kayıtlara M.Ö. 700 yıllarında, Hindistan’da rastlıyoruz. Hindistan’dan Çin’e oradan da Orta Doğu’ya geçen bu yöntemde, sivri bir iğne ile hastanın gözüne bir delik açılarak veya içi boş bir çubuk ile göze vakum uygulamak suretiyle  kataraktlı lens gözden çıkarılıyordu. Bu işlem sonucunda hastanın kataraktlı lensi çıkarılmış olsa bile, uygulanan yöntemin travmatikliği nedeniyle hastalar genelde tedaviye rağmen kör oluyorlardı.

1700’lerde katarakt ameliyatı Avrupa’da da uygulanmaya başlamıştı. İlerleyen yıllarda, gözlerindeki lens çıkarılan hastaların görmelerini bir nebze olsun düzeltmek için, çıkarılan lensin işlevini üstlenecek kalın mercekli gözlükler reçete ediliyordu. 1940 yılında, çıkarılan kataraktlı lensin yerine konacak suni lensin imal edilmesi sonucunda, katarakt hastaları da ameliyat sonrası katlanmak zorunda kaldıkları bulanık görüntü ve ağır gözlüklerden kurtudular, hastalanmadan önceki keskinlikteki görüşlerine kavuştular.

Ne yazık ki, büyük ressam Monet, bu gelişmelerden önce yaşamıştı. Katarakt tanısı aldıktan sonra, bozulan görüşüne rağmen resim yapmayı sürdürdü. Monet’in resimlerine bakarsanız, hastalığının farklı dönemlerinde, kataraktlarının olgunlaşma süreciyle paralel olarak resimlerdeki tema renklerinin yavaş yavaş değiştiğini, resimlerindeki detayının zamanla azalarak fırça darbelerinin daha kaba hale geldiğini görebilirsiniz. Bu durum, ressamın 1800’lerin sonu ile 1926’ya kadar yaptığı 250 kadar tablodan oluşan Nilüferler serisinde oldukça belirgin bir şekilde gözlenebiliyor.

Kataraktları ilerledikçe, Monet göz doktorundan göz doktoruna dolaştı. Fransız bir göz doktoru olan Charles Coutela, sol gözü için gözbebeğini büyüterek göreceli olarak biraz daha iyi görmesini sağlayan bir göz damlası önerdi. Monet, başlangıçta sonuçtan çok memnun olsa da damlanın etkisi zamanla azaldı ve sonunda 1923 yılında, 82 yaşındayken sağ gözünden katarakt ameliyatı oldu. Çağdaşı empresyonist ressam Marry Cassat‘ın katarakt ameliyatından sonra neredeyse tüm görme yetisini kaybettiğini gören Monet, iki gözünden de ameliyat olmayı reddetmiş, ve sadece tek gözünden ameliyat olmuştu.

Ameliyat sonrası, Monet’in sol gözü hala kataraktın etkisiyle mavi ve mor tonlarını pek göremezken, sağ gözü birden bire mavi tonlarına, hatta mavinin de daha ötesine kavuştu.

İnsan retinasındaki renk algılayıcı koni hücreleri, ve hassas oldukları ışık dalga boyları. S hücrelerinin kısmen morötesi (UV) spektruma kaydığına dikkat edin. ( Kaynak: galileospendulum.org)

Sağlıklı bir gözde lens ve  renkleri algılamamızı sağlayan retinamızdaki koni hücreleri, görünür ışık dediğimiz, algılayabildiğimiz ışık spektrumunu belirler. Gözümüzle algılayabildiğimiz renkler, tüm ışık tayfının oldukça küçük bir kısmını içerir. Gözlerimiz, 400 nanometre (0,0000004 metre) dalga boyundaki mor ışıkla, 700 nanometre (0,0000007 metre) dalga boyundaki kırmızı ışık arasındaki renkleri algılayabilir. İnsan gözünde, renkleri algılamamızı sağlayan üç değişik tür koni hücresi vardır: L hücresi denen ve kırmızı tonlarını içeren uzun dalga boyundaki ışığı algılayabilen hücreler, yeşil tonlarının hakim olduğu orta boylu dalgaları algılayabilen M hücreleri, ve kısa dalga boyuna sahip mavi-mor tonlarını algılayabilen S hücreleri. Bu üç tip hücreden algılanan sinyaller, beyinde bir araya getirilir ve böylece görünür ışıktaki tüm renk tonlarını görebiliriz.

Yandaki şekilde de görüldüğü üzere, aslında S hücrelerinin algıladığı ışık boyu, kısmen mor ötesi ışık spektrumuna da uzanmakta. Ancak, sağlıklı bir insan gözündeki S hücreleri morötesi ışığın bir kısmını algılayabiliyor olsa da morötesini göremez. Zira, göz lensimizdeki kristal yapı morötesi ışıklar daha gözümüzün içine girmeden onları filtre eder. Böylece göz içindeki hücrelerimiz kısmen UV ışığa hassas olmasına rağmen, etrafa baktığımızda arılar veya diğer UV dalga boyunu gören canlılar gibi bir görüntü göremeyiz.

Geçirdiği katarakt ameliyatı sonunda, Monet’in sağ gözündeki opaklaşmış lens çıkarılmıştı. Böylece, lensin UV süzme etkisi ortadan kalınca, gözündeki S hücreleri az miktarda da olsa normal insanların göremediği UV ışınları algılamaya başladı.

Bir gözü kataraktlı ve mor-mavi tonlarına neredeyse kör olan, ancak ameliyat olan diğer gözüyle morları, mavileri hatta mor ötesi tonları bile görmeye başlayan Monet, sağ ve sol gözüne ait renk algılarındaki derin fark nedeniyle, bir daha aynı anda iki gözünü kullanamadı. Ama tek gözünü kullanarak resim yapmaya devam etti. Çiçekler hala en sevdiği objelerdi, ancak artık onları daha farklı görüyordu. Pek çok kimse, nilüferlere baktığında onları beyaz renkte görür. Ancak Monet, katarakt ameliyatından sonra sağ gözüyle baktığı nilüferleri mavi-beyaz görmeye başlamıştı, ve bu çiçekleri tuvaline gördüğü tonlarda yansıttı.

Monet’in “Gül Bahçesinden Görünen Ev” tabloları. Gördüğünüz iki tablo, aynı manzaranın Monet’in iki farklı gözüyle yaptığı resimler. Soldaki resim, kataraktlı olan sol gözünü kullanarak, sağdaki resim ise katarakt ameliyatı olan sağ gözünü kullanarak yapılmış. Sağdaki resimde, Monet’in UV ışıkları görebilmesinin sonucu ortaya çıkan baskın mavi-mor tonlar dikkat çekiyor. (Kaynak: Wikipedia)

 

Yaşı daha da ilerleyen  ve sol gözündeki katarakt iyice ilerleyen Monet, artık resim yaparken iyice zorlanmaya başlamıştı. Renkleri ayırdedebilmek için boyalarını tuvaline dikkatle sıralıyor, lensi alınmış gözünü fazla gelen güneş ışığından korumak için resim yaparken geniş kenarlı panama şapkaları takıyordu. 1926 yazında, artık resim yapmaya devam edemeyeceğine karar veren Monet, üvey kızı Blanche’nin yardımıyla, stüdyosundaki beğenmediği 60 kadar tabloyu imha etti ve resim yapmayı tamamen bıraktı.

Monet, tablolarını imha ettikten birkaç ay sonra, 5 Aralık 1926 tarihinde, 86 yaşındayken hayata gözlerini yumdu. Vasiyetinde, cenazesinde hiç bir çiçek olmasını istemediğini belirtmişti:

“Beni, buranın yerlilerini gömdüğünüz gibi, basit bir törenle gömün. Tabutumun arkasından sadece akrabalarım yürüsün. Unutmayın, cenazemde ne çiçekler ne çelenkler olsun istiyorum. Böyle bir gün için, bahçemdeki bu güzel çiçeklerin koparılıp öldürülmesi günahların en büyüğü olacaktır.”

Meraklısına notlar:

Potentilla anserina çiçeğinin görünür ışık ve UV ışık fotoğrafları. UV dalga boylarını görebilen arılar bu çiçeği sağdaki gibi görüyorlar. (Kaynak: Bjorn Roslett)

  •  İnsanların pek çoğunda S hücreleri kısmen de olsa UV ışık dalga boylarına duyarlı, ancak bu hücrelerin UV ışın spektrumunun ne kadarını algıladıkları kişiden kişiye göre değişebiliyor. Artık katarakt ameliyatlarında, çıkarılan göz lensi yerine suni lens takılsa da, bazı kimseler takılan lensin de cinsine bağlı olarak zaman zaman UV spektrumu görebildiklerini ifade ediyorlar.
  • Arılar, UV spektrumunu çok iyi görebilmelerine rağmen, kırmızı tonlarını çok iyi göremiyorlar. Ancak UV’ye hassas gözleri, onların çiçekleri bizden çok daha farklı görmelerini sağlıyor.
  • İnsanlar normalde UV dalga boylarını göremezken, kimi böcekler, kuşlar, kaplumbağalar, kertenkeleler ve pek çok balık görebiliyor. Memelilerin çoğundaki göz lensi, insanlarda olduğu gibi UV dalga boylarının görülmesini engelliyor. Ancak bazı kemirgenler, geyikler ve ren geyikleri memeli olmalarına rağmen UV dalga boylarını görebilen canlılardan.
  • Katarakt oluşumunun en önemli nedeni güneşten gelen UV ışınları. Bu nedenle katarakt olmaktan korunmak için en başta gelen şey gözleri güneş ışınından korumak. Her ne kadar artık tedavisi olsa da, katarakttan korunmak için UV filtreli bir güneş gözlüğünü sürekli kullanmanız öneriliyor. UV filtresi olmayan güneş gözlüklerinin ise yarardan çok zararı var. Zira, gözlerinize karanlık hissi vererek göz bebeğinizin genişlemesine ve gözünüzün içine daha fazla UV ışını girmesine neden oluyorlar. Kısaca ya iyi bir güneş gözlüğü kullanın, ya da hiç kullanmayın.

 

Kaynaklar:
  1. AçıkBilim
  2. Wikipedia
  3. Color Uncovered, San Francisco Exploratorium, iPad uygulaması
  4. Monet’s Ultraviolet Eye, Carl Zimmer.
  5. Claude Monet and the Subjectivity of Color, Galileo’s Pendulum.
  6. Claude Monet and Cataract, Calgary Universtesi, Psikoloji Bölümü Web Sitesi
  7. Monet Biyografisi, Monet Art Prints Web sitesi

 

Daha Verimli İlaç Taşıma Sistemleri İçin Kızılötesi Işın

Bazı ilaç rejimleri (hangi ilaç veya ilaçların ne sıklıkla ve hangi dozajda kullanılacağını öngören düzen), özellikle de tümörleri yok etmek üzere dizayn edilenler son derece zarar verici ve rahatsız edici yan etkiler üretebiliyor. İstenmeyen semptomlar çoğunlukla ilacın veya ilaçların ihtiyaç duyulmayan bölgelere de gitmesinden ve sağlıklı hücrelere zarar vermesinden kaynaklanabiliyor.

Elbette bu bir risk ve her tedavide hepimiz bu riski göze alıyoruz. Ancak bu riski de minimum etmek üzere Kanada, Quebec’ten araştırmacılar, yalnızca yakın-kızılötesi ışık etkisi altında kaldığında ilacı salabilen nanoparçacıklar geliştirdiler. Doktorlar ilacın salınmasını istedikleri bölgeye bu ışık hüzmesini yollayarak tam da istedikleri bölgede ilacın salınmasını sağlayabilecekler. Araştırmanın tüm detayları Amerikan Kimya Topluluğu’nun prestijli dergisiJournal of the American Chemical Society‘de yayımlandı.

Yıllardır bilim insanları bölgesel veya başka bir deyişle yerel tedaviler geliştirerek ilaçların yukarıda sözü geçen nedenden ötürü beraberlerinde getirdikleri yan etkilerden kurtulmak için mücadele edip duruyorlar. Bugüne kadar ışığa, sıcaklığa , ultrasona ve pH değişikliklerine tepki verebilen ilaç iletim sistemleri geliştirildi. Bu uygulamalardan gelecek vadeden bir tanesi de morötesi (ultraviyole) ışınlara duyarlı ilaç taşıma malzemeleriydi.

Işık spektrumunun bu kısmına ait olan ve malzemenin üzerine gönderilen ışın atımı malzemenin içinde bulundurduğu ilacı hedef bölgeye (tıpkı kargo taşıyan bir kurye gibi) bırakıyor. Ancak morötesi ışığın belli sınırları bulunuyor. Örneğin morötesi ışık ışınlarının kendileri de kanserojen ve vücudun iç kısımlarına ulaşabilecek güçte de değiller.

Buna karşılık yakın kızılötesi ışık bir canlı dokuya 1-2 santimetre derinliğe ulaşabilecek kadar penetre edebilir ve nispeten de daha güvenilir bir alternatif; ancak ne var ki ışığa duyarlı ilaç-taşıyıcıları bu ışık türüne tepki vermiyorlar. McGill University’den mühendis profesör Marta Cerruti ve araştırmacı arkadaşları ikisinin de iyi olan taraflarını kullanabilmeyi hedefledi ve bu iki ışığı bir araya getirerek muhtemel bir çözüm şekli yarattı .

Araştırmacılar, yakın kızılötesi ışığı ultraviyole ışığa çevirebilen nanoparçacıklarla yola çıktılar ve daha sonra bu nanoparçacıkları morötesi ışığa duyarlı hidrojel ile kaplayarak içlerine de ilaç moleküllerine refakatçi olması için flüoresan protein (bu protein çeşitleri belli ışıklar altında -rengine göre- parlayarak araştırmacılara bilgi verebilmekte, hücre içi görüntülemeyi kolaylaştırmaktadır) aşıladı. Daha sonra yakın-kızılötesi ışına maruz kalan nanoparçacıklar bu ışık ışınlarını ani olarak morötesi ışınlara çevirerek hidrojel kabuklarının açılmasını sağlıyor ve daha sonra yüklerini dışarı salıyor.

Araştırmacılar bu kargo sistemi yalnızca ilaçları bölgeye ulaştırmak için değil, aynı zamanda tanı koyabilme, bölgeyi görüntüleyebilme, hastalık teşhisi ve bölgeyle ilgili başka bilgilerin alınabilmesi için de kullanabilmek üzere dizayn etmeye çalıştıklarını belirtti.

 


Kaynak : Bilimfili, Ghulam Jalani, Rafik Naccache, Derek H. Rosenzweig, Lisbet Haglund, Fiorenzo Vetrone, Marta Cerruti.Photocleavable Hydrogel-Coated Upconverting Nanoparticles: A Multifunctional Theranostic Platform for NIR Imaging and On-Demand Macromolecular Delivery. Journal of the American Chemical Society, 2016; DOI: 10.1021/jacs.5b12357