Dünya’nın Dönüşünü Neden Hissetmiyoruz?

Tam şu anda saniyede 465 metre (saatte 1674 km) hızda seyahat ediyorsunuz.

Gezegenimiz, atmosferi ve üzerindeki her şey devamlı dönüyor. Ekvatordaki dönüş hızı saatte yaklaşık 1675 kilometre, yani tam şu anda, saniyede 465 metre gibi bir hızda seyahat ediyorsunuz, fakat eğer kutuplardan birine yakınsanız bu hız biraz daha düşüyor.

O halde bunu neden hiçbirimiz hissetmiyoruz? Cevap, Dünya’nın hareketinin yapısında yatıyor.

Sarsıntısız bir şekilde sabit hızda ve rakımda seyahat eden bir uçakta olduğunuzu düşünün. Emniyet kemerinizin tokasını çözdünüz ve koridorda yürüyorsunuz; uçağın hareketini hissedemezsiniz. Sebebi basit; çünkü siz, uçak ve içindeki diğer herşey, aynı hızda seyahat ediyorsunuz. Bu sebeple, uçağın hareketini algılamak için, dışarıdaki bulutlara bakmanız gerekir.

Aynısı Dünya’nın dönüşü için de geçerlidir. Gezegenimiz kendi etrafında bir tam dönüşünü 23 saat 56 dakikada tamamlar, ve neredeyse tamamen sabit bir oranda aralıksız şekilde döner. Bu hareketi hissetmenin bir yolu yüzünüzde rüzgarı hissetmektir, fakat Dünya’nın atmosferinin de bizimle aynı hızda seyahat ettiğini unutmamak gerekiyor.

Eğer Dünya hızını değiştirecek olsaydı bunu kesinlikle hissederdik. Çok hoş olmayacak bu durum, gezegen ölçeğinde aniden frene basmak gibi olurdu (buna karşın atmosfer saniyede 465 metre hızla dönmeye devam eder ve gezegenin yüzeyini süpürürdü). Yani; tıpkı bir uçağın değişmez hareketini hissedemediğimiz gibi, devasa uzay yolculuğumuz da neredeyse tamamen sabit hızla gerçekleştiğinden normal olarak sezilemez.

Peki, Dünya neden bu kadar sabit bir şekilde dönüyor? Çünkü, onu durduran bir şey yok. Güneş Sistemi’nin çöken bir toz bulutundan oluştuğu ve ortasında maddenin yoğunlaştığı, dışa doğru genişleyen düz bir diske dönüştüğü zaman; sistem içerisindeki her şey bu dönüşe sahipti. Güneş ve etrafımızdaki tüm gezegenler, onların uyduları ve sistemimize dağılmış her şey, eylemsizlik yüzünden milyarlarca yıl sonra bile dönüyorlar.

Buna müdahale etmek için, dıştan gelen dengesiz bir gücün uygulanması gerekir. Basitçe, bütün bu arbade içerisindeki nesnelerin bazı diğer nesneler ile çarpışması ve bu yolla ortak dönüşün düzensizliğe çevrilmesi gerekir.

Şimdilik, daha önce söylediğimiz gibi, gezegenimizin dönüşü neredeyse değişmez bir hızda gerçekleşiyor. Eğer kesin konuşacak olursak, Ay’ın yerçekiminin biraz sürüklemesi yüzünden Dünya çok hafif şekilde yavaşlıyor. Gezegenimizin gelgit dalgalarını çekiyor ve gelgit sürtünmesine neden olarak Ay’ın yörüngesine enerji bırakıyor.

Bunun sonucu olarak, bazen saatlerimize fazladan bir saniye eklememiz gerekiyor çünkü Dünya’nın dönüşü her gün saniyenin binde ikisi kadar yavaşlıyor. Yine de, hızdaki bu değişimin son derece küçük olmasından dolayı, Dünya hâlâ sabit bir hızda dönüyormuş gibi hissediyoruz. Diğer bir deyişle, hiç olmuyormuş gibi hissediyoruz.

 


Kaynak:

  1. Bilimfili,
  2. Science Alert, ”Here’s why we don’t feel Earth’s rotation, according to science’‘ Retrieved From 

Kendi Etrafımızda Döndüğümüzde Neden Başımız Döner?

Bir süre etrafınızda döndüğünüzde, muhtemelen baş dönmesi veya vertigo yaşarsınız. Bazı insanlar koltuktan çok hızlı kalktıklarında bile başlarının döndüğünü hissederler. Bu baş dönmesi hissi genellikle vücudunuzun hareket ve dengeyi algılamaktan sorumlu bölümü tarafından beyninize gönderilen sinyallerdeki bir bozulmadan kaynaklanır. Bu fenomeni açıklayan şaşırtıcı sistem iç kulağımızın içinde yer almaktadır.

İç kulağın üst kısmında yer alan vestibüler sistem, vücudumuzun dik mi yoksa yatay mı olduğunu, hareket mi ettiğini yoksa hareketsiz mi durduğunu algılamak için gereklidir. Bu sistem, denge ve uzamsal yönelimi sürdürme becerimizde çok önemli bir rol oynar.

Yerçekimsel Yönelim: Otolitik Organların Rolü

Vestibüler sistem, vücudun yerçekimsel yönelimini algılamaktan sorumlu olan otolitik organları içerir. Bu organlar, otoconia (genellikle tebeşir kristalleri olarak adlandırılır) olarak bilinen küçük kalsiyum karbonat kristalleri içeren utrikül ve sakkülü içerir.

  • Otokoni, saç hücreleri adı verilen saç benzeri yapılar olan duyusal sinir hücrelerine bağlanır.
  • Başınızı farklı yönlere eğdiğinizde (ileri, geri, sola veya sağa), yerçekimi bu otokonyaları eğim yönünde çeker.
  • Otokoninin hareketi saç hücrelerini uyarır ve bunlar da beyne sinyaller gönderir.
  • Beyin bu sinyalleri yorumlayarak başınızın hangi yöne baktığını belirler, böylece dengenizi ve uzamsal farkındalığınızı korumanızı sağlar.

Hareket Algısı: Yarım Daire Kanalları

Vestibüler sistem yerçekimsel yönelimi algılamanın yanı sıra, her biri farklı bir uzay düzlemine yönlendirilmiş üç yarım daire kanalı aracılığıyla hareketi de algılar.

  • Bu yarım daire kanalları endolenf adı verilen bir sıvı ile doludur ve kıl benzeri duyusal sinir hücreleri ile kaplıdır.
  • Başınızı belirli bir yönde hareket ettirdiğinizde, yarım daire kanalları içindeki endolenf atalet nedeniyle bu harekete direnir.
  • Endolenfin göreceli hareketi, kanallar içindeki saç hücrelerini uyararak beyne sinyaller göndermelerine neden olur.
  • Beyin daha sonra baş hareketinin yönünü ve hızını anlamak için bu sinyalleri yorumlayarak vücudun koordinasyonunu ve konumunu buna göre ayarlamasını sağlar.

Baş Dönmesi Fenomeni

Uzun süre döndüğünüzde, yarım daire kanallarındaki endolenf, bir sıvıyı karıştırmaya benzer şekilde, dönme hareketinizle aynı yönde hareket etmeye başlar. Bu hareket beyne sürekli sinyaller göndererek baş dönmesi hissine yol açar. Bununla birlikte, endolenf sonunda dönme hızınızla eşleştiğinde, saç hücrelerinin uyarılması durur ve beyin geçici olarak dönme hissine adapte olur.

Aniden dönmeyi bıraktığınızda, endolenf atalet nedeniyle hareket etmeye devam eder, ancak şimdi vücudunuza göre ters yönde. Bu devam eden hareket saç hücrelerini öyle bir şekilde uyarır ki, sabit olmanıza rağmen beyin sanki hala dönüyormuşsunuz gibi yorumlar. Gerçek hareket ile algılanan hareket arasındaki bu uyumsuzluk baş dönmesi veya vertigo hissine neden olur. Sonunda, endolenf yerleşir, tüy hücrelerinin uyarılması durur ve beyin vücudunuzun pozisyonu hakkındaki anlayışını yeniden ayarlarken baş dönmesi kaybolur.

Pratik Deney

Bu olguyu basit bir deneyle gözlemleyebilirsiniz:

  • Engelsiz açık bir alanda durun ve 5-10 kez hızlıca sağa doğru dönün. Sonra aniden durun. Muhtemelen yukarıda anlatıldığı gibi başınız dönecektir.
  • Baş dönmesi geçtikten sonra deneyi tekrarlayın, ancak bu sefer sağa doğru dönmeyi bıraktıktan hemen sonra aynı sayıda sola doğru dönün. Baş dönmesinin önemli ölçüde azaldığını veya hiç olmadığını fark edeceksiniz. Bunun nedeni, ters yönde dönmenin endolenf bezinin ters yönde hareket etmesine neden olarak daha önceki hareket hissini etkili bir şekilde iptal etmesidir.

Benzersiz Ortamlarda Vestibüler Sistem: Astronotlar ve Dalgıçlar

Astronotlar, vestibüler sistemin işleyişinde kritik bir rol oynayan Dünya’nın yerçekimine maruz kalmadıkları için sıklıkla baş dönmesi yaşarlar. Yerçekimi olmadığında, otolitik organlar düzgün çalışmakta zorlanır ve astronotların “yukarı” veya “aşağı” algılamasını zorlaştırır. Bu durum, bir arabada ya da hız treninde hızla alçalırken midenizde yaşadığınız rahatsız edici hisse benzer kalıcı bir hisle sonuçlanabilir.

Benzer şekilde, dalgıçlar da yerçekiminin yokluğuna benzer bir şekilde otolitik organları etkileyen kaldırma kuvvetinin etkileri nedeniyle su altında bir tür yönelim bozukluğu yaşarlar. Olağan yerçekimi ipuçları olmadan, vücut su altında yön belirlemeyi zor bulur ve bu da oryantasyonu dalgıçlar için kritik bir beceri haline getirir.

İleri Okuma

  1. Goldberg, J. M., & Fernandez, C. (1971). “Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations.Journal of Neurophysiology, 34(4), 635-660.
  2. Fernández, C., & Goldberg, J. M. (1976). “Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force.Journal of Neurophysiology, 39(5), 970-984.
  3. Parker, D. E., & Reschke, M. F. (1989). “Effects of orbital spaceflight on otolith-mediated orientation: Human neurovestibular studies on SLS-1.” The Journal of Vestibular Research, 7(4), 355-369.
  4. Oman, C. M. (1990). “Motion sickness: A synthesis and evaluation of the sensory conflict theory.Canadian Journal of Physiology and Pharmacology, 68(2), 294-303.
  5. McGrath, B. J., & Waddington, G. S. (1999). “The vestibular system and human dynamic spatial orientation.Neuroscience & Biobehavioral Reviews, 23(5), 635-643.
  6. Angelaki, D. E., & Cullen, K. E. (2008). “Vestibular system: The many facets of a multimodal sense.” Annual Review of Neuroscience, 31, 125-150.
  7. Minor, L. B., & Lasker, D. M. (2009). “Tonic and phasic contributions to the response of the vestibular nerve to head rotation.Journal of Vestibular Research, 19(3-4), 159-170.