Antik Yunancadaki ἀ- (a-, “olumsuzluk ön eki”) + τέμνω (témnō, “Ben keserim”)’dan türeyen ἄτομος (átomos, “bölünemez”)’den sırasıyla türeyen Latincedeki atomus (“en küçük parçacık”) ve Fransızcadaki athome‘dan dilimize geçmiştir.

Tıp terimleri sözlüğü
Maddeyi, maddenin uzay-zamanda hareketini enerji ve kuvveti de kapsamak üzere bütün ilgili kavramlarla birlikte inceleyen doğa bilimidir.
Antik Yunancadaki ἀ- (a-, “olumsuzluk ön eki”) + τέμνω (témnō, “Ben keserim”)’dan türeyen ἄτομος (átomos, “bölünemez”)’den sırasıyla türeyen Latincedeki atomus (“en küçük parçacık”) ve Fransızcadaki athome‘dan dilimize geçmiştir.

Latincedeki moveō (“hareket, hareket halinde olmak, harekete neden olmak”) + -mentum (“fiilimsi yapan ektir”)’nin bileşmesiyle oluşmuş movimentum‘dan türemiş isimdir. Anlamları:
| Hal | Tekil | Çoğul |
|---|---|---|
| Nominatif | mōmentum | mōmenta |
| Genitif | mōmentī | mōmentōrum |
| Datif | mōmentō | mōmentīs |
| Akusatif | mōmentum | mōmenta |
| Ablatif | mōmentō | mōmentīs |
| Vokatif | mōmentum | mōmenta |
AHA *wedhe- “itmek, vurmak”den —>Antik Yunancadaki othein, zamanla farklılaşarak ὠσμός (ōsmós, “itmek”) olmuştur.
Çözücü maddelerin (Ör; su gibi) yarı geçirken bir zarla ayrılı az yoğun ortamdan çok yoğun ortama enerji harcamadan geçişidir.
Osmoz, çilek reçeli hazırlanırken kolayca gözlemlenebilir. Şeker eklendikten sonra, sahte meyvenin hücrelerinde bulunan su, meyve parçaları nihayet kendi suyunda yüzene kadar dışarı sızar.
Osmoz, bir çözücünün (genellikle su) yarı geçirgen bir zardan geçerek çözünen madde konsantrasyonunun düşük olduğu yerden yüksek olduğu yere doğru hareket etmesi anlamına gelir. Yarı geçirgen, yarı geçirgen anlamına gelir ve tipik bir örneği hücre zarlarıdır.
Şeker konsantrasyonu hücrelerin dışında çok daha yüksektir, bu yüzden çileklerdeki su dışarı doğru akar.
Tüm hücreler yarı geçirgen olduğu için birçok bitki parçası veya hayvan materyali ile deneyler gerçekleştirilebilir. Örneğin çözücü olarak su, çözünen olarak da tuz veya şeker kullanılabilir. Arıtılmış su (damıtılmış su), çözünmüş maddeler içermeyen saf bir çözücü görevi görür. Suyun hücrelere girmesine neden olur.
İyi bilinen bir örnek, kalsiyum karbonat kabuğu sirke ile çözülmüş olan “çıplak yumurta “dır. Yarı geçirgen bir zara sahiptir ve suya yerleştirilebilir. Çıplak yumurta daha sonra şişer. Ya da yüksek şeker konsantrasyonuna sahip bir şurup içine konur ve pörsür.
Osmoz, lahana turşusu ve sofra tuzu ile kurutulmuş et üretimi gibi geleneksel muhafaza yöntemlerinde de önemli bir rol oynamaktadır. Yüksek tuz konsantrasyonunun koruyucu etkisi vardır çünkü gıdadan ve bakteri gibi mikroorganizmalardan suyu çekerek büyümeyi engeller. Su olmadan yaşam olmaz!
Osmoz, örneğin eczacılıkta kan plazması ve hücre dışı sıvıya benzer bir bileşime sahip olan Ringer çözeltilerinin kullanılmasının nedenidir. Kırmızı kan hücreleri (eritrositler) suya konursa patlarlar çünkü çözücü, çözünen maddelerin konsantrasyonunun daha yüksek olduğu hücrelere akar.
Osmoz doğada ve fizyolojide önemli bir rol oynar, örneğin hücreler için, kökler tarafından suyun emilmesi ve suyun taşınması veya böbrek nefronundaki süreçler için. Geciktirilmiş ilaçlar ozmoz yardımı ile salınabilir ve diyaliz ozmoza dayanır.
Osmoz, enerji üretmek için bir ozmotik enerji santralinde bile kullanılabilir. Bunun nedeni, işlem sırasında iş yapılmasıdır.

Tatil sezonun bitimine yaklaştıkça, önceden sarışın olan birçok insanın artık etrafta esmer dolaşmaya başladığına daha da çok şahit oluruz. Bunun sebebinin ne olduğunu tabii ki biliyoruz, güneşlenerek ya da bir şekilde güneş ışığına maruz kalarak bronzlaşıyorlar. Yalnızca çevrenizle de sınırlı değil; eğer tatile gidebilen şanslı kişilerdenseniz ve güneşlenmeyi seviyorsanız, teninizdeki bu renk değişimine doğrudan tanıklık etmişsinizdir. Peki nasıl oluyor da güneş ışığına maruz kaldığımızda tenimizin renginde değişim meydana geliyor?
Konuya geçmeden önce, güneş ışığının ne olduğunu detaylandırmak gerekiyor.
Güneş ışığı, Dünya’ya 3 farklı formda ulaşır: kızılötesi, görünür ışık ve morötesi ışık. Morötesi ışık da 3 kategoriye ayrılır.
Deniz seviyesindeki morötesi ışımanın %99’u aslında UVA’dır. Genellikle UVB’nin güneş ışığına maruz kalındığında meydana gelebilecek tehlikelerden sorumlu olduğunu görüşü yaygın olsa da; kırışıklıklar, kanser ve yaşlanma gibi bu tehlikeli sonuçları yaratmada UVA’nın da etkili olabileceği düşünülüyor. Morötesi ışıma ile ilgili ilginç şeylerden birisi de, değişik yüzeyler tarafından yansıtılabiliyor olması. Bu yansımalar, morötesi ışığa maruz kalındığında ortaya çıkacak etkileri artırıyor. Mesela kar, morötesi ışığı %90’a kadar yansıtabiliyor. Güneşli bir günde kayak yapanların vücutlarında oluşan güneş yanıklarının ve kar körlüğünün sebebi de bu. Kum da UVB ışığı %20’ye kadar yansıtabiliyor. Yani deniz kenarındayken daha çok morötesi ışığa maruz kalıyorsunuz.
Diğer bir taraftan da, bazı maddeler morötesi ışımayı kısmen ya da tamamen absorbe edebiliyorlar. Cam da bu maddelerden birisi. Cam çeşitlerinin birçoğu, morötesi ışığı iyi absorbe eder. Cam sera içerisinde güneş yanığı olmamanın sebebi de budur. Birçok güneş kremi içerisinde de, güneş ışığını absorbe eden kimyasallar kullanılır.
Güneş ışığı ile ilgili bilgilerin yer aldığı bu kısa girişin ardından, neden bronzlaştığımız sorusunun cevabına geçebiliriz. Çünkü bronzlaşma, derimizin morötesi ışığa verdiği tepkiden kaynaklanıyor. Güneş ışığına ışığa maruz kalan melanositler, bu ışığın içerisindeki morötesi ışığa tepki olarak melanin pigmenti üretiyor. Yani morötesi ışığın melanin üretimini tetiklediğini söyleyebiliriz. Vücudumuzun tepki olarak ürettiği melanin pigmenti, güneş ışığı içerisindeki morötesi ışığı absorbe edebiliyor ve hücreleri morötesi ışığın zararlarından koruyor.
Melanin üretimi de tabii ki bir anda gerçekleşmiyor ve belirli bir zaman alıyor. Bu sebeple, insanların çok büyük bir çoğunluğu tek günde bronzlaşamaz. Yani melanositleri aktifleştirmeniz için kendinizi morötesi ışığa kısa bir süre maruz bırakırsınız ve melanositlerin melanin üretimi saatler sürer. Bu süreci 5 ila 7 gün arasında tekrar ettiğinizde, hücrelerinizin içerisindeki pigment sayısı koruyucu seviyeye gelir.
Bir önceki paragrafın genel olarak beyaz ırk için geçerli olduğunu söyleyebiliriz. Fakat, farklı birçok ırkta, melanin üretimi devamlıdır. Bundan dolayı, deride her zaman bir ölçüye kadar pigment bulunur. Bu ırklarda deri kanseri riski de oldukça düşüktür. Çünkü hücrelerdeki melanin seviyesi, morötesi ışığa karşı sürekli bir koruma sağlar.
Melanositler aslında iki farklı pigment üretirler, eumelanin(kahverengi) ve phaeomelanin(sarı ve kırmızı). Kızıl saçlılar daha çok phaeomelanin ve daha az eumelanin üretmeye yatkındırlar. Bu sebeple, iyi bronzlaşamadıklarını söyleyebilir. Aynı zamanda albinolarda da, tirozinaz enzimi olmadığından melanin üretiminin kimyasal yolu işlemez. Albinoların saçlarında, derilerinde ya da irislerinde melanin bulunmaz.
Melanosit uyarıcı hormon da(MSH) hipofiz bezi tarafından üretilir. MSH kan dolaşımı boyunca akıp melanositlere ulaşarak melanin üretiminin gerçekleşmesi için uyarımda bulunur. Örneğin eğer bir insana yüksek dozda MSH enjekte ederseniz, esmerleşmeye başladığına şahit olabilirsiniz.
Bu yazı HowStuffWorks’de yayımlanan How Sunburns and Sun Tans Work yazısından derlenmiştir.
Orjinal yazı: Bilimfili
Artık neredeyse takip etmekte zorlanmaya başladığımız teknolojik gelişmeler ve doğuşuna tanık olduğumuz yeni ürünler (malzeme bilimi ve biyoloji alanındaki gibi), geçmişteki bilimsel çalışmaların, detaylı ve analitik incelemelerindeki titizliğin ve başarının birer ürünüdür. Daha özgün bir keşifte bulunmak ya da üretilmiş olandan daha iyisini üretebilmek için, eldeki sonuçların ve bu sonuçlara ulaşılırken izlenmiş olan yöntemlerin tam olarak anlaşılmış olması birinci kuraldır.
Hızla gelişen teknoloji dünyasında, ilk olarak dilimize yerleşmiş olan mikro-teknoloji yerini hemen hemen her sektörde duymaya başladığımız “nanoteknoloji”ye bırakmış durumda. Teknolojinin başına eklediğimiz “nano” terimi, Yunanca’dan gelmekte ve herhangi bir ölçünün milyarda biri anlamına gelmektedir. Yani aslında nanoteknoloji ürünü olarak karşımıza çıkan ürünler ya da araştırmalar, nanometre (metrenin milyarda biri-10-9) seviyesindeki çalışmalardan ya da nano-malzemelerin katkısı ile geliştirilmiş teknolojilerden oluşmaktadır. Kendi kendini temizleyen kumaşlar, anti-bakteriyel kıyafetler, gün boyu üzerinizde kalan güneş kremlerinin hepsi içerdikleri nano boyuttaki katkılar sayesinde ortaya çıkan ürünler. İşte bu nano katkıların kontrolü, analizi, nerede nasıl davranacağının belirlenmesi, hangi işlevselliğe sahip olduğunun anlaşılabilmesi büyük önem teşkil etmektedir. Hal böyle iken, doğal olarak insan gözü fonksiyonelliğini yitirmekte ve devreye günümüzün kurtarıcı cihazları mikroskoplar girmektedir.
Mikroskop dediğimiz zaman tarih sayfalarında 1590’lı yıllara kadar geri gitmemiz gerekiyor. Zacharias Janssen adlı Hollandalı bilim adamı, ilk olarak bu tarihte bir tüpün içerisine iki adet mercek yerleştirerek, ilk mikroskobu icat etmiştir. 1600’lü yıllardan bugüne geçen neredeyse 500 yıllık bir zaman dilimi ise, her alanda olduğu gibi mikroskopların geliştirilmesine de büyük bir ivme kazandırmış, mikroskopların sağladığı büyütme 1938 yılında Alman fizikçi Ernst Ruska’nın elektron mikroskobunu icadı ile doruğa ulaşmıştır [1].
Elektron mikroskopları, standart mikroskoplardan farklıdır. Standart mikroskopların kendi içerisinde oldukça farklı çeşitleri, dizaynları ve kullanım amaçları olsa da, ortak noktaları temel olarak ışıktan ve merceklerden yararlanmalarıdır. Elektron mikroskopları ise bundan farklı olarak incelemek istediğimiz cisimden saçılan veya içinden geçen elektronların toplanması neticesinde elde edilen görüntüleri incelememize olanak sağlar. Bu temel prensip bizi iki farklı elektron mikroskobu kategorisine götürür ki bunlardan biri Taramalı Elektron Mikroskobu (Scanning Electron Microscope – SEM), diğeri ise Geçirimli Elektron Mikroskobudur (Transmission Electron Microscope – TEM). Elektron mikroskoplarının hangi aşamalarda bize faydalı olduğundan, hangi örnekleri inceleyebildiğimizden ve ilgi çekici örneklerden bahsetmeden önce, gelin kısaca bu mikroskopların nasıl çalıştığına göz atalım.
Biraz önce bahsettiğimiz SEM, inceleyeceğimiz bir örnek ile gönderilen elektronlar arasındaki etkileşimden yararlanır. Açmak gerekirse, bahsettiğimiz çalışma prensibi vakumlu bir ortam altında, incelenecek olan örneğe elektron göndermek ve bu işlem sonrası cisimden saçılan elektronları toplayarak ekrana görüntüyü yansıtmaktır. Bir elektron mikroskobu, incelediğiniz cismi 300.000 kat büyütebilir, hatta atomik boyutlara kadar görüntü almamızı sağlayabilir.
Bir elektron mikroskobunun (SEM veya TEM) bizlere herhangi bir görüntüyü aktarabilmesinin altında güçlü bir fizik ve mühendislik altyapısı bulunmaktadır. Elektronların oluşturulup gönderilmesinden itibaren başlayan bu zorlu süreç, elektronun mikroskop içindeki davranışlarını kontrol etme, elektronun cisim üzerinde düşeceği yeri belirleme, gönderilen elektronların yoğunluğu, merceklerin kullanımı ve son olarak cisimden saçılan veya geçirilen elektronların toplanması ve yazılım aracılığıyla çözümlenmesi ile beraber zorlu bir süreci kapsamaktadır.
Yukarıdaki şekilde de görebileceğimiz üzere, bir elektron mikroskobunda elektronun cisme ulaşması noktasına gelene kadar oldukça detaylı hesaplamalar sonucu belirlenmiş bir sistem bulunmaktadır. İlk olarak ise incelenecek örnek elektron mikroskobuna yerleştirildikten sonra ortam vakuma alınır ve ardından elektron tabancası adı verilen bir tabanca ile elektron üretilerek cisme doğru gönderilir. Buradaki vakumun amacı elektronların hedefe yani örneğe doğruca, saçılmadan ilerlemesini sağlamaktır. Manyetik mercekler elektronların odaklanmasını sağlarken, diyafram açıklığı dediğimiz bölgeler odak uzunluğunu ayarlar. Örnek ile etkileşiminin ardından farklı açılarda saçılan elektronlar dedektör (algılayıcı) tarafından toplanır ve toplanan verilerin mikroskobun yazılımınca analizi neticesinde görüntüleri elde edilir [4].
Yazının başında belirttiğimiz gibi temel olarak 2 tür elektron mikroskobu mevcuttur. İsim farkından da anlayabileceğimiz üzere, SEM (taramalı elektron mikroskobu), cisimden saçılan elektronların toplanması, TEM (geçirimli elektron mikroskobu) ise, numunenin içinden geçirilerek toplanan elektronlar ile işleyen bir mikroskoptur. TEM, SEM’e göre çok daha detaylı bilgi altyapısı ve zahmetli bir numune hazırlama işlemi gerektiren bir mikroskoptur. TEM kullanılarak cisimleri bir kaç angströme (10-10 m) kadar yakınlaştırabilirsiniz ki bu nano seviyenin de altına inmek, bir hücre veya herhangi bir malzeme için, atomik boyutlarda çalışma gerçekleştirebilirsiniz demektir. Özellikle malzeme biliminde atomik kristal yapı (çoğu katı malzemenin sahip olduğu atomların kendi arasındaki tekrarlı düzen) incelemeleri için TEM kullanılmaktadır. Bu tarz yüksek büyütmeleri yapabiliyor olmamız, TEM’i hem biyoloji hem de malzeme bilimi alanında oldukça değerli kılmaktadır [5]. Tabii TEM’in bu kadar detaylı analizleri gerçekleştirebiliyor olması SEM’in değersiz olduğu anlamına gelmemektedir. Zira her malzemeyi atomik boyutta incelemek gerekmez, kimi zaman da malzemelerin yüzeylerinden görüntü almak ve bu yüzeylerindeki yapıları (dağılımları, oluşumları, tabakaları, hataları) incelemek gerekir. İşte bu noktada da TEM yerine SEM daha kullanışlı bir mikroskoptur araştırmacılar için. SEM ve TEM ile yapılacak incelemeler, farklı araştırma amaçlarına hizmet edeceğinden ve farklı çalışma prensiplerine sahip olduklarından dolayı, incelenecek örneklerin (kısaca numune) hazırlama işlemleri de buna göre farklılık göstermiştir. SEM numuneleri biraz sonra daha detaylı bahsedeceğimiz üzere nispeten daha kolay ve pratik bir şekilde hazırlanabilirken, bir TEM numunesi mikron boyutlara kadar inceltilmekte ve ardından mikroskoba yerleştirilmektedir.
Şekil 3: Geçirimli Elektron Mikroskobu (TEM) örneği ve kendini mikroskobuna adamış bir bilim adamımızın TEM’e numune yerleştirme çabası.
Aslında sorunun tam anlamıyla belli kalıplar içerisine yerleştirilmiş bir yanıtını vermek oldukça zor. Zira günümüzde elektron mikroskopları biyolojik numunelerde, seramiklerde, metallerde, polimerlerde, tekstilde, kısacası mikro, nano veya atomik boyutta incelemelere gereksinim duyulabilecek her alanda kullanılabilmekte. Bu nedenle de, bu sorunun cevabını bir elektron mikroskobunda ‘nelere bakamayız’ın cevabını belirleyen limitlerden bahsederek verirsek eğer, çok daha açıklayıcı bir yanıta ulaşmış oluruz. İlk sınırlandırma olarak, eğer bir numuneyi elektron mikroskobunda incelemek istiyorsanız, öncelikle numunenin katı olması gerekiyor. Ayrıca numunelerin yerleştirileceği bölmeler belirli fiziki sınırlamalara sahip olduğundan bizim numunelerimiz de belirli boyutlar içinde olmak durumunda. Bu da örnek olarak SEM için yaklaşık 10 cm uzunluk 40 mm genişlik ile karşılık buluyor. Yani bir tuğlayı elektron mikroskobunda inceleyebiliriz ama bu tuğladan bir parça almamız gerekli. Ayrıca, incelenecek olan numunenin iletken (elektrik iletkenliği) olması gerekiyor. Numunenin kendisi iletken değilse veya iletkenliği zayıf ise SEM numuneleri genellikle karbon veya altın ile kaplanıyor. Bu kaplama için küçük bir ek kaplama cihazı adı verilen cihazlar kullanılıyor. Ancak bu kaplama oldukça ince bir tabakadan ibaret olduğu için numunenizi incelerken bu kaplama sizin aldığınız görüntülerde herhangi bir etki yaratmamakta sadece elektronlarınızın numunelerinizin üzerinde ahenkle dans etmesine yardımcı olmakta [6].
TEM’de incelenecek bir numunenin ise elektron geçirimini sağlaması açısından önce zımparalar yardımıyla inceltilmesi ardından da iyon inceltici de elektron geçirgenliği kazandırılmak üzere işlem görmesi gerekmektedir. İyon inceltici dediğimiz cihaz, SEM için kullandığımız kaplama cihazı gibi TEM için yardımcı cihazlardan birisidir. İyon inceltici, hali hazırda mekanik bir şekilde mikron seviyelere kadar incelttiğimiz numunelerimize, iyon bombardımanı göndererek aşındırmayı sağlamaktadır. Biyolojik numunelerde ise bunlardan çok daha farklı yöntemler uygulanarak numuneler TEM’e hazır hale getirilir [7,9]. Bu saydıklarımız gibi belirli engeller dışında, elektron mikroskobu ile inceleyemeyeceğimiz numune yoktur. Farklı çalışma parametreleri altında (voltaj, çalışma mesafesi gibi) incelenecek numuneler için çeşitli mikroskop modifikasyonları ya da çalışma ayarları mevcuttur (örnek olarak, eklentiler yardımıyla geliştirilmiş bir SEM ile bir malzemenin hangi elementleri içerdiğini bulabilirsiniz).
Bir elektron mikroskobunun temel prensibinden ve nerelerde kullanılabileceğinden yeterince bahsettik. Eğlenceli kısmı sona saklayalım dedim. Elektron mikroskobunda gerçekten her şey incelenir mi sorusunu soran okuyucular için ilk örneklerimiz SEM ile incelenen ve oldukça savaşçı bir görüntü veren bir Avustralya kenesinden geliyor, ardından yine biyolojik bir örnekle ama bu sefer “sıçrayan örümcekler” ailesinden Habronnattus ophrys örümceğinin sevimli surat ifadesi (araknafobisi olan ben söyleyebildim bunu!), vahşi batıdaki kaktüslere benzeyen ama aslında magnezyum oksitin büyüyen bir kristali, her ne kadar çimlerin üzerindeki güller gibi dursa da aslında zirkonyum oksit görüntüsü, adeta çıtır çıtır yemelik duran altın renkli titanyum dioksit parçacıkları ile devam ediyor ve okyanus tabanlarında bulunan sıcak su bacalarındaki sevimli (!) kurdumuz ile son buluyor.
Görebileceğimiz üzere biyoloji alanında SEM, oldukça sıklıkla kullanılan inceleme yöntemlerinden birisi. Ancak SEM, malzeme bilimi alanında da hayati sayılacak bir inceleme yöntemi. Bir tekstil ürününün anti-bakteriyel (bakteri üremesine engel) olması için eklenen gümüş nano parçacıklarından tutun da, bir plastik ambalajın mekanik olarak çok daha dayanıklı olması için eklenen nano parçacıkların incelenmesi gibi çok geniş bir alanda kullanılmakta. Bu arada belirtmekte fayda var ki, SEM incelemeleri gerçekleşirken alınan görüntüler her ne kadar siyah-beyaz olarak elde edilse de, bunların renklendirilmesi yönünde emek sarf eden araştırmacılar da var (bilim ve sanatın ahengi).
Bahsettiğimiz gibi SEM ile numunelerin yüzeylerinden görüntü aldığımız için çok daha ilgi çekici ve dekoratif tablo amaçlı kullanabileceğimiz çalışmalar mevcut. TEM ile yapılan çalışmalarda görüntülerdeki bilimsellik dolu dizgin iken ve sanatsallık ne yazık ki biraz daha azalıyor. Bunlara örnek vermek gerekirse, bir adet Marlburg virüsü ve Zn-Mg-H kristalimsi bizim fikir edinmemize yardımcı olacaktır.
Bahsettiklerimizi toparlamak gerekirse, SEM ve TEM kullanarak, bir kenenin yapısından, seramik bir yapının kırılma yüzeyine, bakterilerden nano parçacıklara, virüslerden, kristal yapılara kadar çok çeşitli numuneleri inceleyebilmekteyiz. Bugün hepimizin diline yerleşmiş olan nanoteknoloji kelimesinin, bu kadar yaygın bir şekilde kullanılabilmesi, ürünlerin ve araştırmaların istenilen seviyelere ulaşabilmesi elektron mikroskoplarında harcanan uzun mesailere ve zahmetli çalışmalara sıkı sıkıya bağlıdır. Bu nedenle “mikroskopçu” yetiştirmenin özellikle bilimsel anlamda büyümek isteyen ülkelerde en önemli unsurlardan biri olduğunun unutulmaması gerekmektedir. Glenn Richards’ın da dediği gibi, “Çok sayıda mikroskop var ama çok az sayıda mikroskop uzmanı var”.
Not: Son resimde hazır atomik düzen, kristal yapı terimleri geçmişken bir gezi tavsiyesi ile yazıyı bitirirsek güzel olur kanaatindeyim. Eğer bir gün yolunuz Brüksel’e düşerse mutlaka ama mutlaka Atomium’a uğrayın derim (yazar burada uktesinden bahsediyor). Atomium demir atomunun kristal yapısını temsil etmekte ve bilim ile mimariyi birleştirme noktasında bizlere güzel bir örnek teşkil etmekte.
Kaynaklar:
[1] http://www.nobelprize.org/educational/physics/microscopes/timeline/index.html
[2] http://www.purdue.edu/rem/rs/sem.htm
[3] http://cbe.ivic.ve/mic250/pdf/thesebook-chap3.pdf
[4] http://www.jeolusa.com/DesktopModules/Bring2mind/DMX/Download.aspx?Command=Core_Download&EntryId=598&PortalId=2&TabId=320
[5] http://www.nobelprize.org/educational/physics/microscopes/tem/
[6] http://serc.carleton.edu/research_education/geochemsheets/techniques/SEM.html
[7] http://temsamprep.in2p3.fr/fiche/fiche.php?lang=eng&fiche=19
[8] http://merlab.metu.edu.tr/tem-oernek-hazirlama-uniteleri
[9] http://en.wikipedia.org/wiki/Ion_beam
Bilim adamları, laboratuvar ortamında fotosenteze benzer bir süreç yaratarak karbondioksidi kullanılabilir yakıta dönüştürdü.![]()
ABD Enerji Bakanlığının Argonne Ulusal Laboratuarı ve Illinois Üniversitesinden araştırmacılar, “yapay yaprakta”, fotosentez sırasında bitkilerin katalizör olarak kullandığı enzim yerine “tungsten diselenide” denilen metal bileşiği kullandı.
Araştırmacılar fotosenteze benzer sürecin sonunda karbondioksidi karbonmonokside dönüştürmeyi başardı.
Bilim adamları, sera gazı olmasına rağmen kimyasal açıdan karbondioksitten çok daha aktif karbonmonoksidi kullanılabilir yakıt metanole dönüştürmüştü.
Araştırmayı yürüten ekipten Larry Curtiss, tek başına karbondioksidi başka bir şeye dönüştürmenin zor olduğunu, kardondioksidin karbonmonokside dönüşmesi tepkimesine doğada rastlanmadığını belirterek, “Fotosentezde ağaçlar enerji kaynağı üretmek için ışık, su ve karbondioksit kullanıyor. Deneyimizde biz de aynı girdileri kullanıyoruz ama farklı ürünler elde ediyoruz.” dedi.
Curtiss, kullandıkları “tungsten diselenide” katalizörünün 100 saatin üzerinde dayanma süresi olduğunu kaydetti.
Araştırmacılardan Peter Zapol, karbondiokside göre karbonmonoksitten yakıt yapmanın çok daha kolay olduğunu vurgulayarak, tepkimenin en az enerji kaybıyla gerçekleştiğine dikkati çekti. Zapol, “Kömür, petrol veya benzin gibi birçok farklı hidrokarbon yakıtları tüketiyoruz, bu nedenle kimyasal yakıtları güneş ışığı yardımıyla yeniden kullanılabilir hale getirmenin ekonomik bir yolunu bulmamız çok önemli.” ifadesini kullandı.
Araştırmanın sonuçları, Science Daily dergisinde yayımlandı.
Muhabir: Ayşe Aktaş (Anadolu Ajansı)

Sinonim: Ekografi, Yansılanım.
Ses dalgaları kullanarak vücudun içinin görüntülenmesidir. Bkz; Sono–graf–i
Doppler sonografik ölçüm için, kan akış profilinin, insonasyon açısının mümkün olduğu kadar küçük olduğu bir bölümden elde edilmesi gerekir.


Belirli seramik ve kristallere elektriksel gerilim yaratılması sonucu oluşan ters piezoelektrik etkisi ile ultrason dalgaları üretilir.

Ultrason probları 64-10.000 kadar piezoelektrik element içerirler. Bu elementlerde oluşturulan elektriksel gerilim ile problardan ultrason dalgaları çıkması sağlanır. Vücudun çeşitli bölgelerin prob yardımıyla gönderilen ultrason dalgaları yansıyarak tekrardan proba döner ve piezoelektrik elementlerini titreştirir. Titreşimler elektriksel akıma dönerek cihazda bulunan tarayıcı tarafından okunur ve dijital bir resme dönüştürülür.

Ultrason dalgaları vücuda girdikten sonra çeşitli dokulardan geçerler. Bir dokudan başka bir dokuya geçerken değişen frekansları ve tekrardan probe geri dönüş süresiyle birlikte cihazda bir çok veri toplanır. Bu verilerin değelendirilmesi ile çeşitli renklerde bir dijital resim oluşur. Yumuşak dokularda ve vücut sıvılarında yankı az veya hiç oluşamadığından resimde siyah, diğer dokularda ise yankıdan dolayı daha beyaz tonlarında renklerle resimde temsil edilir.

Kan gibi akışkanlar için doppler etkisi yardımıyla görüntüleme yapılır. Spektral veya renkli doppler görüntülemesi ile damarda akış yönü ve hızındaki bozukluklar tespit edilebilir.

Kullanılan dalga frekansları; 2-5 MHz’dir.
Doğumla ilgili olan muayenelerde 3,5 MHz, obez hastalarda 2,6 MHz, aşırı zayıf hastalarda ise 5 MHz tercih edilir. Frekans ne kadar yüksek olursa o kadar yüzeysel olan yapılar gözlemlenebilir ve ne kadar az olursa frekans, derindeki yapılar bir o kadar rahat açığa çıkarılabilinir.




Harvard’dan araştırmacılar, B2 vitamininden ilham alınarak geliştirilen ve rüzgar ya da güneş enerjileri gibi kaynaklardan gelen kesik kesik enerjinin güvenli bir şekilde depolanmasını da sağlayacak yeni bir yüksek performanslı organik moleküller sınıfı tanımladılar.
Bu gelişmeler aslında, aynı takımın çalıştığı ve enerjinin kinonlar ve demir siyanür içerisinde depolandığı yüksek kapasiteli akışkan bataryaların sonrasında geldi. Bu gelişmelerle oyun biraz daha değişmiş oldu, artık bu bataryalar daha yüksek performanslılar, yanmıyorlar, insan sağlığına zararsızlar, aşındırıcı değiller ve düşük maliyetli kimyasallardan oluşuyorlar. Bu sayede, geniş bir skalada maliyetsiz enerji depolamak mümkün hale geliyor.
Her ne kadar daha önceki çalışmalarda kullanılan çok amaçlı kinonlar, akışkan bataryalar için büyük umutlar vadetse de, Harvard’dan araştırmacılar daha iyi performans elde etmek için organik molekülleri araştırmaya devam ettiler. Fakat aynı çok amaçlılığı diğer organik sistemlerde bulmak oldukça zordu.
Yaklaşık bir milyon farklı kinonu araştıran bilim insanları, yeni bir batarya elektrolit malzeme sınıfı geliştirmeyi başardılar. Aslında bu çalışma, basit sentezleri içeriyor. Yani geniş bir skalada düşük maliyetli imal edilebiliyorlar. Bu da Nature Energy’de yayımlanan araştırmanın en önemli amaçlarından birisi.
Akışkan bataryalarda, enerji harici tanklarda bulunan çözeltiler içerisinde depolanıyor. Tankların boyutu büyüdükçe de, daha fazla enerjinin depolanabilmesi mümkün hale geliyor. 2014 yılında Harvard’dan bilim insanları, geleneksel batarya elektrolitleri olan metal iyonlarını, hayvanlarda ve bitkilerde enerji depolama molekülleri olan kinonlarla değiştirmişlerdi. 2015 yılında da geliştirilen bir kinon, alkali çözeltilerin yanı sıra yaygın bir gıda katkı maddesi içerisinde de çalışabiliyordu.
Yapılan en yeni çalışmada ise araştırma takımı, vücut içerisinde enerji depolamaya yardımcı olan B2 vitamininden ilham aldılar. B2 vitamini ve kinonlar arasındaki anahtar farklılık, elektronları alıp bırakırken oksijen atomları yerine nitrojen atomlarınınkullanılıyor olması.
Orijinal B2 vitamini molekülü üzerinde yaptıkları birkaç ayar ile, bu yeni molekül grubu akışkan bataryalar ile kullanılmak için oldukça iyi bir aday konumuna geldi.
Bu moleküller oldukça yüksek kararlılıkta ve çözünürlükteler, ayrıca yüksek batarya gerilimi ve depolama kapasitesi sağlıyorlar. Çünkü vitaminler, oldukça kolay yapılabiliyorlar. Yani vitaminlerin geniş bir skalada oldukça düşük maliyetlerle üretilmesi mümkün.
Araştırmacılar bu molekülleri kendi geliştirdikleri bataryanın ihtiyaçlarını karşılaması için tasarladılar. Fakat bu moleküller doğası gereği enerji depolama için umut vadediyor. Doğada vücudumuzda enerji depolama için oldukça önemli olan benzer moleküller de bulunuyor. Bilim insanları yaptıkları çalışmalarda, yeni molekül sınıfının yanı sıra kinonları da araştırmaya devam ediyorlar.
İlgili Makale: Kaixiang Lin et al. A redox-flow battery with an alloxazine-based organic electrolyte, Nature Energy (2016). DOI: 10.1038/nenergy.2016.102

Delft Üniversitesi Kavli Nanobilim Enstitüsü’nden bilim insanları , 8000 bitlik veriyi(1kb), tek tek klor atomlarına kodlayarak veri depolamayı başardı. “Teorik olarak bu derece depolama yoğunluğuyla dünyada yazılmış bütün kitaplar posta pulu kadar alana depolanabilir”, diyor baş bilim adamı Sander Otte. Bu sayede bir inç kareye ( 6,4 cm2) 500 terabit depolanabilir. Yani piyasada mevcut harddisklerden 500 kat daha fazla depolama mümkün. Araştırma 18 Temmuz Nature Nanotechnology ‘de yayınlandı .
Kaydırmalı YapbozEkip taramalı tünelleme mikroskopunun (STM) keskin iğnesi her bir atomun yüzeyinde gezdirebiliyor. Bilim insanları bu proplarla sadece atomları görüntülemekle kalmayıp, aynı zamanda onları itebiliyor. “Bunu kaydırmalı yapboza benzetebilirsiniz. Her bit bakır atomlarının yüzeyinde ve klor atomunda iki pozisyon yaratarak, bu iki pozisyon arasında kaydırma imkanı sağlıyor. Eğer klor atomu yukarı pozisyondaysa deliğin altındadır ve 1 konumundadır. Eğer delik yukarı pozisyondaysa klor atomu aşağıdadır ve bu bit 0 olarak okunur,” Otte. Çünkü klor atomları diğer klor atomları tarafından sarılır ve deliklerin yakını ihmal edilir ve her biri diğerinin konumunu korur. İşte bu nedenle delikli methot diğer veri depolama metotlarına göre çok daha stabil ve uygundur.
Atomik manipülasyonun adımları
Delft’ten araştırmacılar belleği 8 baytlık bloklar halinde (64bit) organize ettiler. Her blok bir işaretçiye sahip ve klor atomlarından oluşan delikli bir örüntü oluşturuyor. QR kodlardan ilham alan araştırmacılar bakır tabakaya hassas bir konumlama yaptılar. Ayrıca bu kod , blok hasara uğradığında bunu gösterecek. Bu sayede bellek bakır yüzeyi mükemmel olmasa da , daha büyük boyutlarda üretilebiliyor .
Bu yeni yaklaşım stabilite ve ölçeklenebilirliğe mükemmel yaklaşımlar getirebilir. Fakat bu tipte bir belleğin datacenterlarda kullanılması için halen çok zaman var. Otte : “Oluşturulan bu hafıza için çok temiz vakum koşulları ve sıvı azot gerekiyor ki, gerçek atomik boyutta depolama için halen geliştirilmesi gereken çok şey var. Yine bu gelişme bizim büyük bir adım teşkil ediyor.”
Kaynak :
Bitkisel dokular denince hepimizin aklında ışıklar çakar: pek doku, sürgen doku, koruyucu doku, iletim doku vs… Saydıklarımız arasından bu yazımız için önemli olan ise iletim dokusu. İletim dokusu, odun ve soymuk boruları başta olmak üzere, kanallar aracılığıyla su, besin ve mineralleri bitkinin bütün bölümlerine iletir. Evet, hatırlar gibisiniz. Gene de, bitkilerin ve dğer canlıların bütün bu işlemleri ne kadar başarılı bir şekilde yaptıkları çoğunlukla gözümüzden kaçar. Aslında bitkisel iletim, yarıçapı santimetreden nanometreye değişen on binlerce esnek kanalda, kılcallık ve deformasyona uyumlu şekilde taşıma yapma becerisine sahiptir. Bu sistem akışkanlara mikro ve nano, yani metrenin milyonda ve milyarda biri düzeyinde hükmedebilir.
Şekil 1. Mikroakışkan teknolojisiyle işleyen bir cihazın boyutları madeni paranınkini geçmiyor. Bu şekildeki cihazda yüz civarında kanal yan yana ve birbirinden ayrı duruyor. Bu, aynı işlemi tek seferde yüz kez tekrarlayabilmemiz veya aynı anda yüz farklı değişkeni test edebilmemiz demek. (Fotoğraf: Lawrence Livermore Ulusal Laboratuarı, ABD)
Bilimin günümüzde ulaştığı noktalardan biri, her ne kadar doğa kadar başarılı olmasa da, akışkanların mikro- ve nanometre mertebesindeki dinamiklerini çözerek metrenin milyonda/milyarda biri boyutlarında mühendislik yapabiliyor olmak. Misal, yarıçapı 10 mikrometre (μm) olan kanallar üretip (Şekil 1) içlerine onlarca hücreyi tek tek yerleştirebiliyor, sonra her bir hücrenin etrafındaki ortamı aynı anda değiştirip etkileri gözlemleyebiliyoruz. Veya proteinlerin bir araya gelip daha büyük yapılar oluştururken çevrelerine uyguladığı kuvvetleri ölçüp hesaplayabiliyoruz. Kısacası, mikroakışkan teknolojisi uygulayabiliyoruz. Yazımızın ilerleyen kısımlarında sizlere mikroakışkan teknolojisinin heyecan verici dünyasından bahsetmek istiyoruz.
Mikro ve nano hacimlere sahip sıvıları mikrometrelik kanallarda dolaştırmaya ve yapılan her türlü mühendislik mikroakışkan teknolojisi olarak tanımlanıyor [2, 5]. Hayatımızın birer parçası olan tesisatlar, musluklar, borular ve bahçe hortumlarında suyun litrelercesini bir arada akarken görmeye alışkın olan bizler için, bu sistemlerin metrenin milyonda birine inmesi çok büyük bir şaşkınlık yaratmayabilir. Ancak boyutlar küçüldükçe akışkanların değişen özellikleri, bu yazıda belirteceğimiz pek çok farklı fiziksel yapının işlemesine izin veriyor. Öte yandan mikroakışkan teknolojisi, bazı fiziksel olguların ve öngörülerin incelenmesi, hassas kimyasal ve biyolojik analiz, hasta başında ve hastaya özel teşhis, özelleşmiş reaktörler ve çip üstü laboratuar gibi birçok muhteşem uygulamanın yapılabilmesini sağlayan bir harikadır.
Nerelerden Geldik?
Maddenin temel yapılarina ilişkin bilgilerimiz, Antik Yunan’daki felsefi yaklaşımları ve çıkarımları bir kenara bırakırsak, 16. yüzyılda başladı. Maddenin temeliyle ilgili çalışmalara paralel olarak akışkanlar üzerindeki bilgimiz de arttı. Arşimet’ten sonra Isaac Newton, Daniel Bernoulli, Blaise Pascal gibi bilim adamlarının yaptıkları çalışmalar sayesinde insanlık akışkanların, ya da bildiğimiz şekliyle sıvıların ve gazların, kuvvet altında ne şekilde davrandığını keşfetti. Yirminci yüzyılda kimya ile kuantum mekaniğindeki gelişmeler sayesinde maddenin yapısına dair bilgilerimizi genişlettik ve mikro düzey, yani bir canlı hücresinin boyutları seviyesinde işlerin nasıl yürüdüğünü anlamaya başladık. Lakin mikro dünyayı bilmek ile mikron mertebesinde çalışmak ve mühendislik yapmak farklı şeylerdir [5]. Bundan dolayı, her ne kadar gözümüzün önünde bu işi başarıyla yürüten bitkiler olsa da, insanlık metrenin milyarda biri düzeyinde mühendislik yapabilmek için çok güçlü bilgisayarları cebimize sokan yarıiletken teknolojisini beklemek zorunda kaldı.
Yarıiletken teknolojisi, 1850’lerden sonra silisyum, germanyum ve galyumun, iletken metallerinkiyle yalıtkan ametallerinki arasındaki elektriksel iletkenliğinin kullanılmasıyla hayatımıza girmeye başladı. Özellikle kauntum mekaniğinin, yani atom seviyesindeki dünyanın işleyişini ortaya koyan yasaların ortaya çıkarılması bu malzemelerin daha iyi anlaşılmasını sağladı. Yarıiletken teknolojisi ile birlikte gelişen mikroelektronik, sadece elektronik yapıların değil, ısıl ve mekanik sistemlerin de küçültmesine ve hızlandırılmasına ön ayak oldu. Bütün bu gelişmelerin sonucu, MEMS olarak kısaltılan mikroelektromekanik sistemlerdir. MEMS’in örnekleri arasında yazıcıların mürekkep püskürtmesini sağlayan yapılar ile algılayıcılar var. Akışkanların da MEMS teknolojisine dahil edilmesiyle mikroakışkan teknolojisi kendini tarih sahnesinde buldu.
İyi de, ne işimize yarıyor?
Mikroakışkan teknolojsinin uygulama alanı, temel fizikten moleküler biyolojiye, kimyadan tıbba kadar uzanıyor. Üretiminin oldukça ucuz olması, kütlenin ve ısının çabuk ve kolay iletimiyle dağıtımı ile dizayn konusundaki esnekliği gelecek için de büyük umutlar beslenmesine sebep oluyor.
Şekil 2. Gaz kromatografisi (Wikipedia’dan Türkçeleştirildi.)
Mikro ve nano seviyeyi kontrollü bir şekilde çalışabilmemiz, analiz yöntemlerini hassaslaştırmamızı ve geliştirmemizi kolaylaştırıyor. Özellikle kimyacıların örneklerin içeriğini belirlemekte kullandığı kromatografi gibi metotların keskinleştirilmesi, çok daha az örnek ile daha hassas işlem yapılabilmesine olanak veriyor [5]. Gözümüzde daha rahat canlanması için gaz kromatografisini (GC) ele alalım: Bu metot bozulmadan buharlaşabilen örneklerin kimyasal yapısının belirlenmesinde ve bileşenlerine ayrıştırılmasında kullanılır. İncelenecek örnek, içi seçici-tutucu bir maddeyle dolu olan tüpe verilir. Gazın içerisindeki bileşenler bu madde ile farklı oranlarda etkileştiğinden, tüp içerisindeki hızları da birbirinden farklı olur. Farklı hızlarla hareket eden gazlar, işlemin pek çok kez tekrarlanması ile verimli bir şekilde ayrıştırılabilir. Mikroakışkan teknolojisiyle ise 10-15 μm yarıçapında kanallar üretip ve onları alanı birkaç santimetrekareyi geçmeyecek bir yüzeye monte ediyoruz Böylece metrelerce uzunlukta bir tüpü birkaç santimetrekareye sıkıştırmış oluyoruz. Bu sayede, bütün GC sistemi minyatürleştirilmiş oluyor ve çok daha hızlı ve verimli işliyor [6].
Mikroakışkanların en heyecanlandırıcı uygulamalarından biri, çip üzerinde laboratuar (LOC) teknolojisi (Şekil 3). LOC’nin temeli, bir laboratuarda yapılan bütün işlerin birkaç mm uzunluğundaki çiplerde gerçekleştirilmesi. Böylece çok küçük hacimlerdeki örneklerin kimyasal ve fiziksel yapılarının, birbirlerine paralel olarak, hızlı ve doğru bir şekilde belirlenebilmesi sağlanıyor. Çok farklı ve kompleks dizaynlara sahip olabilen LOC sayesinde, bir damla kan ile kan hücresi sayımı, olası hastalıkların teşhisi, tek kanserli hücrelerin tayini gibi farklı işlemleri tek bir yapıda toplamamız mümkün olacak.
Şekil 3. Birden fazla bileşenin karışımı ve tepkimesi için düzenlenmiş LOC cihazı sayesinde karmaşık işlemler çok küçük boyutlarda gerçekleştirilebiliyor. (Kaynak: ABD Ulusal Genom Bilimi Enstitüsü)
Bir diğer önemli uygulama ise, kişi odaklı ve hasta başında teşhis. Gelişmiş LOC cihazları ile, hastaların hastaneye gitmeden gerekli tahlilleri yapabilmeleri, mikroakışkan teknolojisinin sağlık bilimlerine önemli bir katkısı [4]. Mikrocihazların boyutları, 1 ilâ 100 μm boyutlarındaki hücreleri tek tek incelememizi sağlıyor. Hücreleri içlerinde bulundukları dokudan ayırıp ayrı ortamlara aktarabiliyor ve aynı anda pek çok hücrenin ayrı ayrı hangi değişkenlere ve maddelere tepki verdiklerini, cihaz içerisindeki sıvının niteliğini değiştirerek takip edebiliyoruz. Öte yandan, biyoteröre karşı savaşta, zar zor elde edilen çok küçük örneklerin içerdiği eser miktarda maddenin analizi de bu yolla gerçekleştirilebiliyor (Şekil 4) [7]. Sağlık alanındaki uygulamaların pazar büyüklüğü, uygulamanın gelecekteki ekonomik değerine ışık tutuyor: 2010 yılı itibariyle iki milyar dolarlık bir pazar yaratılmış durumda.
Şekil 4. ‘Mikrokanallarda damlacık üretimi. Yağ-su karışımı ve uygun ara elemanlar sayesinde kanalların içinde damlacıklar oluşturmak, hatta bu damlacıkları da protein molekülleriyle doldurmak mümkün. Damlacık içerisinde gerçekleştirilen kimyasal tepkime sayesinde proteinlerin an be an izlenmesi ve gelişimlerinin gözlenmesi mümkün.’ (Knowles vd., 2011 makalesinden yazarların izniyle Türkçeleştirilerek kullanıldı.)
Paralel kanallarda gerçekleştirilen farklı kimyasal reaksiyonlar ile, reaksiyonların gerçekleştiği ortamlar da küçülmüş oluyor. Mikro seviyede ısı ve kütle transferlerinin kolaylaşması da cabası [6]. Hedef, aynı anda kimyasal tepkimeleri gerçekleştiren, ürünleri ve atıkları ayrıştırabilen, ürünlerin kimyasal yapısını belirleyebilen, küçük, dayanıklı ve taşınabilir sistemler üretmek. Mesela, 1998 yılında, Ann Arbour’daki Michigan Üniversitesi’nde geliştirilen bir cihaz ile araştırmacılar, nanolitre hacmindeki DNA örneklerini karıştırma, çoğaltma ve parçalama ile tepkime sonunda oluşan ürünleri belirleme işlemlerini aynı anda yapma şansını buldular [1]. Şu anki seviyemiz ile bir fabrika seviyesinde üretim henüz söz konusu değil, ancak gelişmeler yakın gelecekte bunu da gerçekleştirebileceğimizi gösteriyor [7].
Peki, tam olarak ne yapıyoruz?
Mikroakışkanlar, insanlığın akışkanlara dair bilgisini mikro düzeye indirmesi ve metrenin milyonda biri mertebesinde manipülasyonlar, değişimler yapabilmesinin ifadesidir. Artık o dünyayı sadece anlamıyor, değiştirebiliyoruz da.
Makrodan mikro seviyeye indiğimiz zaman, akışkanların davranışları farklılık göstermeye başlıyor. Kütleçekimi gibi uzaysal/hacimsel, yani etkisini üç boyutta gösteren kuvvetlerin önemi azalıyor. Buna karşılık kılcallık; sıvının kanal duvarlarıyla güçlü etkileşimi ve yüzey gerilimi; sıvı yüzeyinin kuvvete karşı gösterdiği direnç, yani yüzeysel kuvvetler daha çok önem kazanmaya başlıyor.
Temelde gözümüzde canlanan günlük tesisattan pek farkı olmamasına rağmen, kütleçekiminin önemini kılcallık ve yüzey gerilimi gibi kuvvetlere bırakması, cihazlarda günlük hayattan farklı dizaynlara yönelmemize neden oluyor. Mikroakışkanlarla çalışmak için, akabilecekleri kanallar, akışı sağlayacak mikropompalar, işleyişi düzenleyecek mikrokapılar ve mikrovanalar yapmamız gerekiyor. Bu yapıları gerçekleştirebilmek içinse, silikon, polimer veya cam malzemeler kullanıyor ve hayalgücümüz ve fiziksel yasalar arasında kalan bölgede cihazlarımızı yaratıyoruz.
Sonuç
Bu yazımızda heyecan verici uygulamaları ve parlak bir geleceği olan mikroakışkan teknolojisinden bahsettik. Mikrometre boyutlarındaki kanallarda akışkanların kontrol edilmesiyle gerçekleştirilen bu uygulama ile tıbbi teşhis ve kimyasal analiz için gerekli olan madde miktarı azaltılmış, tıp ve temel bilim uygulamalarında çığır açabilecek sonuçlar elde edilmiştir. Gelecek, mikrodan nanoakışkanlara doğru evrilecek olsa da, bu konuya yazımızda değinmedik. Mikroakışkan teknolojinin şu anki durumu ve gelecekteki beklentiler göz önüne alındığında, alınması gereken çok yol olduğu aşikar; ancak karşılığında bu teknolojinin insanlığa hizmetleri o denli büyük olacak.
[1) M. A. Burns vd., 1998. An Integrated Nanoliter DNA Analysis Device. Science 282:484–487.
[2) F.A. Gomez. Biological applications of microfluidics. Wiley-Interscience, 2008.
[3) J.W. Hong, vd., 2004. A nanoliter-scale nucleic acid processor with parallel architecture. Nature Biotechnology 22:435–439.
[4] A. Rasooly. Lab on a Chip Technology: Biomolecular separation and analysis, volume 2. Caister Academic Press, 2009.
[5] P. Tabeling. Introduction to microfluidics. Oxford University Press, 2005.
[6] S.C. Terry. A gas chromatography system fabricated on a silicon wafer using integrated circuit technology. 1975.
[7] P. Watts ve C. Wiles, 2007. Recent advances in synthetic micro reaction technology. Chemical Communications (5):443–467.
Şekil 4. T. P. J. Knowles vd., 2011. Observation of spatial propagation of amyloid assembly from single nuclei. Proceedings of the National Academy of Sciences of the United States of America 108:14746-14751.
Yorum yazabilmek için oturum açmalısınız.